ANNUAL REPORT 2017 - 18

FOR THE PERIOD

APRIL 2017 to MARCH 2018

<u>ICAR – KRISHI VIGYAN KENDRA</u> <u>Hosted by SCAD</u> <u>Thoothukudi District, Tamilnadu</u>

Annual Report 2017 – 18 PROFORMA FOR PREPARATION OF ANNUAL REPORT (April-2017-March-2018)

APR SUMMARY

(Note: While preparing summary, please don't add or delete any row or columns)

1. Training Programmes

Clientele	No. of Courses	Male	Female	Total participants
Farmers & farm women	40	423	548	971
Rural youths	12	101	138	239
Extension functionaries	5	81	84	165
Sponsored Training	б	134	71	205
Vocational Training	3	25	6	31
Total	66	764	847	1611

2. Frontline demonstrations

Enterprise	No. of Farmers	Area (ha)	Units/Animals
Oilseeds	150	60	
Pulses			
Cereals	20	10	0
Vegetables	10	4	0
Fruits	15	б	0
Total	195	74	0
Livestock & Fisheries	10	0	20
Other enterprises	1	0	5
Total	11	0	25
Grand Total	206	74	25

3. Technology Assessment & Refinement

Category	No. of Technology Assessed & Refined	No. of Trials	No. of Farmers	
Technology Assessed				
Crops	3	15	5	
Vegetable	3	15	5	
Livestock	2	20	10	
Various enterprises	2	5	25	
Total	10	55	45	
Technology Refined				
Crops				
Livestock				
Various enterprises				
Total				
Grand Total	10	55	45	

4. Extension Programmes

Category	No. of Programmes	Total Participants
Extension activities	945	17190
Other extension activities	49	Mass
Total	994	17190 + Mass

5. Mobile Advisory Services

				Туре	ype of Messages				
Name of KVK	Message Type	Crop	Livesto ck	Weather	Marke ting	Awar e-ness	Other enterpris e	Total	
	Text only	24	13	50	-	8	-	95	
	Voice only								
	Voice & Text both								
	Total Messages	24	13	50	-	8	-	95	
	Total farmers Benefitted	18718	18718	18718		218		56372	

6. Seed & Planting Material Production

	Quintal/Number	Value Rs.
Seed (q)	18.47	299364
Planting material (No.)	4801	241935
Bio-Products (kg)	6858	419070
Livestock Production (No.)	1786	106452
Fishery production (No.)	_	_

7. Soil, water & plant Analysis

Samples	No. of Beneficiaries	Value Rs.
Soil	482	40150
Water	115	4600
Plant		
Total	597	44750

8. HRD and Publications

Sr.	Category	Number
No.		
1	Workshops	8
2	Conferences	1
3	Meetings	4
4	Trainings for KVK officials	8
5	Visits of KVK officials	4
6	Book published	0
7	Training Manual	4
8	Book chapters	0
9	Research papers	0
10	Lead papers	0
11	Seminar papers	0
12	Extension folder	6
13	Proceedings	0
14	Award & recognition	1
15	On-going research projects	0

PART I - GENERAL INFORMATION ABOUT THE KVK

1.1. Name and address of KVK with phone, fax and e-mail

KVK Address	Telephone		E mail	Wah Address	
K V K Auuress	Office	Fax	E man	web Address	
ICAR KVK	0461	0461			
Hosted by SCAD, Vagaikulam,	0401-	0401-	pcscadkvk@gmail.com	www.scadkvk.org	
Mudivaithanendal Post, Thoothukudi	2209500	2209300			

1.2 .Name and address of host organization with phone, fax and e-mail

Address	Telephone		E mail	Wah Address	
Auuress	Office	Fax	Eman	web Audress	
Social Change and Development (SCAD)	0462	0462			
105A1, North Bye pass road,	0402- 2501008	0402-	scb_scad@yahoo.com	www.scad.org.in	
Vannarpettai, Tirunelveli - 3	2301008	2301007			

1.3. Name of the Programme Coordinator with phone & mobile No

Nama	Telephone / Contact					
Iname	Residence	Mobile	Email			
Dr. V. Srinivasan	-	9942978486	srinitutkvk@gmail.com			
1 4 W						

1.4. Year of sanction: 1995

1.5. Staff Position (as 31st March 2018)

SI. No	Sanctioned post	Name of the incumbent	Designatio n	M /F	Discipline	Highest Qualification	Pay Scale	Basic pay	Date of joining KVK	Perman ent/Tem porary	Category (SC/ST/ OBC/ Others)
1	Programme Coordinator	Vacant									
2	SMS	Dr.V.Srinivasan	SMS & PC i/c	М	Animal science	M.V.Sc., (Vet. medicine)	15600- 39100 +5400	26010	8.7.1999	Р	Others
3	SMS	S. Sumathi	SMS	F	Home science	M.Sc., (H.Sc.Ext.,)	15600- 39100 +5400	25340	1.12.2000	Р	OBC
4	SMS	P. Velmurugan	SMS	М	Horticulture	M.Sc., (Horticulture)	15600- 39100 +5400	23760	30.1.2001	Р	SC
5	SMS	A. Murugan	SMS	М	Agronomy	M.Sc., (Ag) (Agronomy)	15600- 39100 +5400	18240	18.07.2011	Р	SC
6	SMS	Vacant			Plant protection						
7	SMS	Vacant			Agriculture Extension						
8	Programme Assistant	I. Jeyakumar	Lab. technicien	М	Lab Assistant	M.Sc (Microbiology)	9300- 34800 +4200	10130	12.07.2013	Р	Others
9	Programme Assistant	J. Jove	Computer	М	Computer science	M.C.A	9300- 34800 +4200	12050	01.04.2011	Р	OBC
10	Programme Assistant	K. Dhamodharan	Farm Manager	М	Agriculture	B.Sc.,(Agri)	9300- 34800 +4200	13050	31.8.2009	Р	OBC
11	Assistant	S.S. Ganesan	Accountant	М	-	M.Com	9300- 34800 +4200	19870	1.6.1996	Р	Others
12	Stenographer	Vacant									
13	Driver 1	A. Dominic James	Driver	М	-	SSLC	5200- 20200 +2000	10380	1.6.1996	Р	OBC
14	Driver 2	Gulam Rasul	Driver	М	-	SSLC	5200- 20200 +2000	10060	1.7.96	Р	OBC
15	Supporting staff 1	K. Rajeshwaran	Farm assistant	М	-	BA	5200- 20200+ 1800	8560	1.12.96	Р	SC
16	Supporting staff 2	V. Xavier	Watchman	М		M.Com	5200- 20200+ 1800	8080	12.11.01	Р	OBC

1.6. Total land with KVK (in ha)

: 20 ha	
---------	--

S. No.	Item	Area (ha)
1	Under Buildings	2.0
2.	Under Demonstration Units	0.8
3.	Under Crops	3.0
4.	Orchard/Agro-forestry	6.0
5.	Others	8.20

1.7 Infrastructural Development: A) Buildings

		Source	Stage						
S.	Name of building	of		Complete		Incomplete			
No	Traine of building	funding	Completion	Plinth area	Expenditure	Startin	Plinth area	Status of	
		runung	Date	(Sq.m)	(Rs.)	g Date	(Sq.m)	construction	
1.	Administrative	ICAP	2001	1100	42 Lakha				
	Building		2001	1100	42 Lakiis				
2.	Farmers Hostel	ICAR	02.03.2011	305	35 Lakhs				
3.	Staff Quarters	ICAR	2007	650	24 Lakhs				
4.	Demonstration Units								
	. Poultry shed	ICAR	2006	160	1.49 Lakhs				
	. Vermicompost unit	ICAR	2006	40	0.4 Lakhs				
5	Storage Godown	ICAR	2.3.2012	45	3 Lakhs				
6	Vehicle cum Implement shed	ICAR	2.3.2012	60	3 Lakhs				

B) Vehicles

Type of vehicle	Year of purchase	Cost (Rs.)	Total Kms. Run	Present status
Tempo cruiser	3/30/2004	4.96	1,82,867	Needs major repair and maintenance
Bajaj boxer CT 100 deluxe	4/18/2005	0.39	80,576	Running
Hero Honda Splendor	4/13/2009	0.45		Running

C) Equipments & AV aids

Nome of the equipment	Year of	Cost	Dresont status
Name of the equipment	purchase	(Rs.)	r resent status
OHP	1996	18315	Good Condition
Fax machine	2009	15000	Good Condition
Power tiller	2010	150000	Good working condition
3 KVA UPS	2009		Good Condition
VSAT Modem	2009		Good Condition
LCD Projector (In focus)	2011	35490	Good Condition
AV aid	2011	15000	Good condition
Slide projector	1996	14265	Not in use
Mf tractor and trailer	1999	362400	Not in use
Electronic type writer	1996	19200	Not in use and condemned
Photo copier	2005	82840	Not in use To be condemned
Computer with printer and accessories	2005	68800	Not in use and condemned
Digital photo camera	2005	19990	Not in use To be condemned
EPABX	2011	15000	Not in use to be condemned
LCD projector screen and laptop computer	2007	98600	Under repair and spares not available To be condemned
Generator	2011	150000	Under repair, spares not available
Server computer – 1	2009	-	Supplied under e-linkage program
Personal Computer – 5			3 PCs are not in working condition

S. Ν Status of action taken in brief Date **SAC Member Major recommendations** 0 29.11.17 1 Dr. H. Philip, Minimum of 50 programmes may be Information about the conduct of training DEE, TNAU given in AIR. Each Scientist should programmes for every month for October to Feb give at least one program a month in 2018 was given to AIR and future also this will be continued AIR Information on successful farmers. The following KVK scientists and farmers entrepreneurs, training details may also delivered talk/interview to AIR on the be broadcasted in AIR following topics Date of Staff Topic broadcast 01.01.2018 Integrated farming Dr.V.Srinivasa system: a talk Senior scientist and Head i/c 08.01.2018 Snake guard cultivation P.Velmurugan technologies: a Talk Scientist Horticulture 15.01.2018 Paneer preparation from S.Sumathi Scientist Home milk :an interview science 22.01.2018 Direct seeding of paddy Mr.A.Murugan with drum seeder: an Scientist interview Agronomy 29.01.2018 Azolla cultivation K.Dhamodhara technique : an interview n Farm manager 07-01-2018 Role of FPC in the V.Subbaraman service of farmers :an Ottanatham interview 14-01-2018 D.Kingsly Experience in integrated farming an interview mangalagiri 21-01-2018 K.Shanmugala Role of biofertilizer in dry farming : an kshmi. Sokkalingapur interview am, Vilathikulam 28-01-2018 Mr.A.P.K. Farming experience : an Ramamoorthi interview Keelapoovani Mr.A.kumarku rubaran Ottanatham Advisory messages 5.12.17- World soil day news and message 12.12.17: Paddy nursery management 9.1.18 : On Mango fruit/flower drop management This will be done in Keelapoovani and Impact studies in proper format should be done after 3 years in the adopted Akkanayakanpatti villages in this year 2018-19 villages Fisheries Dept and CMFRI can also be Will be included as suggested in the future included in the converge meetings in events the future events Small. medium and large During Feb 2018,50 farmers were taken to Vermicompost units are functioning exposure visit to TNAU and visited the various very well at TNAU and the farmers demo units there. may be encouraged to visit those units to start more number of such units Advised KVK to guide farmers to get This will be undertaken on need basis by a shop allotment in Uzhavar Santhai motivating the farmers and farmers producer companies during the year 2018-19. A specific through Agri marketing department FLD programme is planned for the year 2018personals 19 on this line for TN kulam vegetable farmers. Dr.Y.G.Prasad More focus to be given on organic Six training programmes on organic farming Director, farming, integrated farming practices and 5 programmes on integrated farming and 7 ATARI and value chain promotion programmes on value chain promotion were

1.8. Details SAC meeting conducted in 2017 – 18 (Date: 29.11.2017 – 13th SAC Meeting)

 		1
		conducted until march 2018 after the SAC meeting
	KVK to increase the distribution of soil health card among farmers	KVK has supplied soil health cards to all the FLD, OFT farmers and also to all the farmers in
		the adopted villages.
	KVK to organize more number of skill trainings with longer duration(3-5 days) in future	7 numbers of 3days duration and one programme of 6 days duration were conducted during 2017-18
		This will be adhered as advised in the year 2018-19 also
	KVK can take up the fish fingerling production	This will be adhered as advised in the year 2018-19
	KVK should increase the fodder and seedling production	During the year 2017-18 KVK has supplied 355kg of Fodder sorghum seeds, 52kg of Hedgelucerne seeds, 2585 numbers of fodder seedlings like subabul, Sesbania and drumstick have been supplied.
		the fodder production at KVK as advised during SAC
	Proper license should be obtained for the production of bio fertilizer and technical backstopping should be done for the bio fertilizers	Approached the department of agriculture and came to know that as on date no licensing is required for the production of biofertilizer and licensing is required only for bio pesticide production like pseudomonas fluorescence. Efforts will be taken to obtain the necessary license for the production of the same in the year 2018-19
	Short video films (3minutes) on innovative farmers to be produced by KVK.	Already 2 videos were produced on tractor drawn weeder and Mesquite pod value addition practices. Other innovations by the farmers will be explored and documented during the year 2018-19 as suggested
	A model village may be selected and base line survey to be conducted with 20 families to study the impact created through KVK interventions with an aim to doubling the farmers income	This will be done in the year 2018-19 at TN kulam village in Kayathar block
Mr.Kingsly,	Wanted to visit a successful cow dung	50 Farmers were taken to KVK Erode and
Progressive Farmer, Mangalagiri	liquid manure production unit	shown the successful model of cow dung liquid manure production and usage unit in the month of Feb 2018.
Mr.Raju, chairman, Thendral FPC, Surandai	Since the Karnataka paddy variety is fetching very good price in the local market, a similar variety may be of great help.	TKM 13 paddy is a fine grain variety equal to Karnataka Ponni and the same was demonstrated in Melapoovani and the seed will be supplied to Surandai region in the coming season
Mr.Ravi, AGM, Lead Bank	Back ended subsidy schemes are available to start dairy farm, KVK can send interested farmers to banks to avail this facility	66 farmers were enrolled in Joint liability groups and helped to avail loan facility to start the dairy farm in Mudiman, Pasuvanthanai , Eppodumvendran, Maravanmadam and South silukkanpatti villages during the year 2017-18
Station In charge, CMFRI	The cage fabrication charge can be met by CMFRI and state fisheries department, so the cost for the cage may bring down to a reasonable level.	Interested fishermen will be identified and sent to Fisheries department to start cage fish culture in the coming year
Assistant Director of Horticulture	KVK should motivate the farmers to use drip irrigation facilities offered by dept. of Horticulture	12 awareness programmes were organized by KVK in Poovani, Akkanayakanpatti, lakshmipuram, Ottanatham, Kootampuli villages in thoothukudi district, Out of these programmes 13 farmers have already laid out drip irrigation and 12 are in the pipe line . one

	KVK support is needed in promotion of bio fertilizer usage in banana	FPC at Kootampuli started their own drip irrigation supply unit as business promotion KVK is recommending 4kg of Azophos per ha as basal for banana cultivation round the year and this is promoted through the farmers producer company at Kootampuli, Athimarapatti villages in Thoothukudi and Kalakkadu and surandai region. During the year 2017-18 KVK has supplied 3.78qtl of Azophos, 4.6 qtl of Pseudomonas to the banana farmers
Mr. Palani Velayudam, AD of Agri. Representing JDA, Thoothukudi	KVK's expertise in FPO registration is required for department KVK can share the farmers producer company database to the agriculture department to avoid duplication	KVK has shared its experience on FPC registration, director selection, CEO selection and business plan preparation and maintenance of records and registers etc. to the department of agriculture Thoothukudi and facilitated them with booklets on FPC formation and its maintenance. Farmer's data base of FPCs promoted by KVK will be shared as and when required by the department on need basis.
Mr. Muruganandam , Programme officer, AIR, Tirunelveli	If many farmers are interested to record their experience in farming, AIR ready to come and record their successful farming practices in KVK premise itself	One recording programme was held at KVK and 5 farmers experience was recorded and broadcasted already.In future attempts will be made to record more number of farmers experience with AIR
Dr. Chellapandian, P&H,ANN, VCRI, Tirunelveli	KVK can promote the mineral mixture in a larger way. Mineral mixture for goat and sheep also developed at VCRI and KVK can promote these products also Since Feed quality testing facility is available at VCRI, KVK can use this service in the coming days To produce CO FS 29 in a larger quantity, KVK can promote farmers group for the same purpose	KVK has procured 300 kg of SMART mineral mixture in the year 2017-18 and planned to procure 1000kg during the year 2018-19 to reach more number of farmers KVK has submitted the feed samples for analysis to VCRI and made adjustment in the feed compounding based on the results for its own cattle and poultry feed requirements. KVK has promoted 126 farmers during the year 2017-18 for CoFS 29 /31 cultivation and majority of them are producing seeds and supplying to their neighbors, and 3 farmers came forward to supply the seeds to KVK from Allikulam and Pudiyamuthur region.
Dr. Veerabadran, Professor, FCRI	Suggested to send beneficiaries to avail training facilities offered in 16 new technologies developed at FCRI	9 farmers were sent to FCRI to avail training programme on fish rearing during the year 2017-18

PART 2 – DETAILS OF DISTRICT

2.1 Major farming systems/enterprises (based on the analysis made by the KVK)

S. No	Farming system/enterprise				
1	Dry farming – single crop in a year using NE monsoon,				
	Major crops- chillies, pearl millet, maize, onion, fodder sorghum, sorghum, black gram, green gram, gingelly,				
	sunflower, groundnut, castor, red gram, cotton, tomato, ,brinjal, cluster bean.				
	Major livestock – goat, sheep, backyard poultry, Cross breed cattle, Non-descript cattle				
2	Garden land farming – two or three crops in a year using open or tube well irrigation.				
	Major crops- vegetables, banana, groundnut, flowers, chillies, drum stick, and cotton				
	Major livestock- cross bred cattle, goat, backyard poultry				
3	Tank fed/ river command area farming – one or two crops in a year.				
	Major crops – Banana and paddy				
	Major livestock – cross bred cattle, goat, sheep, backyard poultry				
4.	Coastal region – Marine fishing, goat rearing, salt pan work				

2.2 Description of Agro-climatic Zone & major agro ecological situations (based on soil and topography)

S. No	Agro-climatic Zone	Characteristics				
01	Southern zone	The topography of the zone is undulating. This zone lies on the rain shadow area of the				
		Western Ghats. The mean annual rainfall is 650mm with a contribution about 470mm from				
		North East monsoon. The soil of this region falls under major groups viz., black, red, alluvia				
		and lateritic. Saline coastal alluvial soils are also present in the coastal belt. In black soil only				
		one crop, either cotton or sorghum is raised. Direct seeded rice is cultivated under rain fed				
		condition. On red soil, groundnut crop is raised. Under garden land conditions, Bajra and				
		chillies form the major crops.				

S. No	Agro ecological situation	Characteristics
01.	Hot semiarid eco region (H ₁ D ₂)	Hot and dry summers and mild winters with a mean annual rainfall of 600 to 1000mm and a length of growing period of 90-150 days in a year. Soil type- red loamy soil, Rain fed cultivation is the traditional practice with crops like millets, pulses, and oilseeds under irrigated conditions cotton, sugarcane and rice are the major crops. Severity of the soil erosion and drought due to poor moisture holding capacity of soil are the major constraints.
	Hot sub humid to semiarid eco region with coastal alluvium derived soil (S ₇ CD ₂₋₅)	Crop growth period 90-210 + days, coastal alluvium soil type

2.3 Soil types

S.No	Soil type	Characteristics	Area (in ha)	
1	Sandy soil	These are derived from granities ,graniloid,quartzites and sand stones .The colours are due to	70,324	
		red hematite and yellow limonite .Base Exchange capacity is from 5 to 25 meq per 100 g of		
		the soil and pH generally on the acidic side, ranging from pH 4.5-6.5		
2	Clay soil	hey have a characteristic dark colour ,varying from dark brown to deep black .They are		
		formed by the weathering of trap rocks .These soils have a clay percentage ranging from 40-		
		60%.the composition of clay is chiefly of the monomorillonite group and thus shows swelling		
		and shrinking .The pH varies from 7.5-8.5		
3	Sandy	Moderate medium sub angular blocky, dry hard, moist friable, wet slightly sticky and very	31,722	
	loam	slightly plastic ;many fine roots ;many fine and common medium pores ;rapid permeability		
		;clear smooth boundary; pH 6.8		
4	Sandy	Weak fine sun angular blocky ;dry slightly hard ,moist friable ,wet slightly sticky and slightly	82,226	
	clay loam	plastic ,slight effervescence ; many fine roots ;many fine to medium irregular pores		
		;moderately rapid permeability ;clear smooth boundary ; p ^H 8.0		
5	Sandy	Moderate medium sub angular blocky, dry hard, moist firm, wet sticky and plastic; many	8,688	
	clay	fine roots ;few fine pores and mild effervescence ;slow permeability ;clear wavy boundary;		
		pH 7.3		

S.	Crop	Area (ha)	Production	Productivity (kg /ha)	% to the total
No	Crop	mea (na)	(Metric tons)	Troductivity (kg/ha)	area sown
1.	A. FOOD GRAINS:				
	a) CEREALS & MILLETS				
	Paddy	18700	29814	4520	14.10
	Sorghum	15800	18871	2106	5.79
	Cumbu	10000	16473	1754	8.26
	b) PULSES				
	Black gram	52104	6540	172	22.37
	Green gram	33906	6269	177	20.42
2	B. FIBRE				
	Cotton	7172	6440	1.32	3.39
3.	C. OIL SEEDS				
	Ground nut	1050	1151	2227	0.82
	Sesame	1910	307	274	1.32
	Sun flower	1940	614	490	1.02
4.	D. OTHER CROPS				
	Chilli	12384	2058	176	10.27
	Banana	7379	287340	30000	6.66
	Drumstick	950	19000	20000	0.66
	Coriander (Grains)	2363	1023	315	2.26
	Onion	2783	18096	12000	1.05
	Other vegetables	1144	36896	16000	1.60

2.4 Area, Production, and Productivity of major crops cultivated in the district

* Source: Joint Director of Agriculture, Thoothukudi District (Year 2016 – 17)

2.5. Weather data

M	D	Tempo	erature ⁰ C	Humidity (%)		
Nionth	Kainfall (mm)	Maximum	Minimum	Maximum	Minimum	
April – 2017	1.21	31	28	85	68	
May	14.17	34	26	80	64	
June	1.46	34.8	27.2	82	67	
July	2.32	34.7	28.9	80	69	
August	31.67	34.2	29.9	84	71	
September	69.16	34	26	85	73	
October	36.38	32	26	86	74	
November	161.83	31	24	90	79	
December	144.36	30	23	90	79	
January – 2018	18.32	29	22	90	61	
February	0.65	35	22	96	63	
March	12.63	35	24	97	76	

Source: 1. scientific officer, Meteorological Observatory, ARS (Kovilpatti) (Temperature and Humidity) District JDA office, Thoothukudi for RF

2.6 Production and productivity of livestock, Poultry, Fisheries etc. in the district

Category	Population
Cattle	124310
Dogs	36427
Sheep	188946
Goat	305842
Poultry	315157

Source: 18th livestock census

Category	Area	Production	Productivity
Fish			
Marine	163.5 km	41050 tonnes	-
Inland			
Prawn	NA	NA	NA
Scampi	NA	NA	NA
Shrimp	NA	NA	NA

Source: Assistant Director of Fisheries, Thoothukudi

2.7 Details of Adopted Villages (2017 – 18)

Year of Adoption:

SI. No.	Taluk	Block	groups of villages	How long the village is covered under operational area of the KVK (specify the years)	Major crops & enterprises being practiced	Major problems identified	Identified thrust areas
1	Srivaikund am	Karungula m	Manakkarai Alwarkarku lam Kongaraya kurichi Anandana mbi kurichi	2014 – 15	Paddy 270ha	Low level of awareness on high yielding new varities (92%). Lack of awareness on IPM practices (78%) low yield from the existing ruling Variety (ASD-16) (4500kg/ha) Continuous usage of local seeds, Poor cultivation practices (78%)	1,2,3,4
2				2014 - 15	Banana - 110ha	Underutilization of space, water and soil (30-40%) lower number of suckers/ha (2.1x2.1m =2260plants/ha) Lower net profit/unit area due to single crop 1.37lakhs/ha) low roductivity (35 ton/ha)	1,2,3,4,5,6
3				2014 – 15	Goat - 270	Mortality upto 10 % in adults and 30% in kids due to infectious diseases like neonatal viral enteritis, Entero toxemia, Anthrax, Blue tongue Pneumonia, footrot and endo and ectoparasitism vaccination and deworming : no vaccination and medication No dipping is practiced to control ecto parasites Improper housing conditions during rainy and winter seasons leading to heavy motality in kids	14
4				2014 - 15	Backyard poultry – 750	Mortality upto 80% due to RD	14
5	Ottapidara m	Ottapidara m	Akkanayak anpatti Otudanpatti Puliyampat ti	2014 - 15	Black gram and green gram 350 ha	40% yield loss due to YMV, Poor pod filling due to MN deficiency (62%), Labour shortage for weeding in time (76%) Non availability of latest high yielding varieties in time (91%) Heavy usage of Weedicide &High cost of weedicide	1,2,3,4,6
6				2014 - 15	Onion 42 ha	Low water level during summer Low Production and net return to garden land farmers, High cost of bulbs	1,2,3,4,6
7				2014 - 15	Groundnut 25 ha	High labour requirement and cost Drudgery for farm women involved in ground nut stripping and decorticating (60%), Lack of access to groundnut stripper and decorticator (100%)	1,2,3,4,6
8				2014 – 15	Cattle 125	less returns from dairy cattle rearing leading to reduction in number of milch cow keeping (40% of farmers (35 persons) gave up rearing milch cows because of less profitability , Infertility or delayed fertility due to mineral deficiencies (65% of cows were affected with this this problem)	14,15

9				2014 - 15	Sheep 2500 Goat 200	Mortality due to diseases like ET, BT, Sheep pox, endo and ectoparasitism (upto 50%)	14,15
10	Srivaikund am	Srivaikun dam	Siruthanda nallur, Sakkaamm	2014 - 15	Coconut – 80 ha	Lower net income (Rs.20000/ac/yr Red palm weevil, Rhinocerous beetle	5
11			al puram, Eral, Perungula m Athimarapa tty	2014 – 15	Banana 330 ha	Lower net profit (Rs.112500/ha) Transport and safeguarding the poles Damage due to wind (40- 60%) Recurring expense for traditional scaffolding system (70% of production cost) High cost of casuarinas poles (Rs.50-60/pole)	1,3,4
12				2014 – 15	Snake gourd 40 ha	Underutilization of resources (Land, water, space)(50%), low or no income during off season period in Drumstick - 100% low level of awareness on high yielding cucurbitaceous vegetables (30%), High seed cost of hybrid &usage of poor quality seeds	1,3,4
13				2014 - 15	Nutrition garden	Lack of place to grow vegetables Malnutrition (45%) and anemic among women and children (60%) Poor usage of available space (40%)	8
14	Villathikula m	Pudur	Chinnanaya kanpatti Pudupatti	2015 - 16	Green gram – 110 ha	Labour shortage for sowing and weeding in time, Lack of practice on line sowing, Lack of access to combined harvester	1,2,3,4,6
15				2015 - 16	Dairy Cow 125	less returns from dairy cattle rearing leading to reduction in number of milch cows (40% of farmers (35 persons)	14,15
16				2015 - 16	Sheep	Mortality upto 30 % in adults and 50% in lambs due to infectious diseases like sheep pox, Entero toxemia, Anthrax, Blue tongue Pneumonia and ctoparasitism	14,15
17				2015 – 16	Sorghum- 150 ha	Low productivity in K-8 variety (990Kg/ha) Crop losses in existing commercial hybrids due to drought condition in later stage of crop growth (50%) High cost and non-availability of Commercial hybrid seeds Late maturing long duration commercial varieties invites midges attack (55%)	1,2,3,4,6
18				2015 – 16	Cluster been	Water scarcity for Summer crop (65%) Poor awareness on high yielding, drought hardy, alternate crops (60%) Low net profitability of other crops	1,2,3,4,6
20	Srivaikund am	Karungula m	Lakshmipu ram, Keelapoova ni, Melapoova ni	2015 - 16	Paddy 155 ha	Low Yield 4500 kg/ha, Lack of awareness fine grain varieties (60%), Ruling fine varieties ADT-(R) 45 is of lodging type (50%), Poor cultivation practice (76%) Continuous usage of local seeds (55%) Lack of awareness on IPDM practices (78%) Water scarcity (100% in Maturity Stage) Water availability 95 – 100 days only	1,2,3,4,6
20				2013 - 10	Green gram	40% yield loss due to YMV,	1,2,3,4,6

					240 ha	Poor pod filling due to MN	
					240 lla	deficiency (65%), Labour shortage for weeding in time	
						(72%), Non availability of seed in time (91%)	
21				2015 - 16		Mortality upto 10 % in adults	
						and 30% in kids due to	
						infectious diseases like	
						Entero toxemia Anthrax	
						Blue tongue Pneumonia,	
						footrot and endo and	
					Goat	ectoparasitism	14,15
						deworming practice	
						No dipping is practiced to	
						control ecto parasites,	
						Improper housing conditions	
						seasons leading to heavy	
						motality in kids	
22				2015 - 16		Low level of awareness on	
						high yielding new varieties	
						(90%), Continuous usage of	
					Ground nut	Labour shortage for sowing	1,2,3,4,6
						and weeding in time (75%)	
						Non availability of seed in	
				2015 16		time (91%)	
				2013 - 10	Poultry	Mortality upto 90% due to ranikhet diseases	12,14,15
23	srivaigunda		Manjalneer	2017-18		Low land area (80%)	
	111	srivaigund	Palavakava		Paddy	Lack of awareness on	1234
		am	l,			saline resistant short	1,2,0,1
			Kovangadu			duration varieties	
						Low return	
					Banana	(RS.55000/acre/year) in	12346
					Danana	cultivation Yield loss due	1,2,3,4,0
						to pest and diseases (20%)	
					Dealeriand neultmy	Mortality upto 40% due to	12 14 15
					васкуата рошиту	RD	12,14,15
						High cost of concentrate	
						reduces the profitability	
						(85%)	
						Excessive feeding of grain	
						or gruel leading to	
						development of SARA	
						and locomotor	
					Cattle	abnormalities (25%)	14,15
						Green lodder snortage	
						Poor nutritive value in	
						straw and crop residue fed	
						to cattle (80%)	
						Reduced milk production	
						due to mastitis (22%) and	
24	V:1-4-1 1			2017 19		intertility (15%)	
24	v Hatnikula m			2017-18		Lack of market out let for Palm tuber in villages	
	111					Lack of awareness about	
		371 4 1 1				its value addition	
		Vilathikul	Vembar		Palmyrha trees	Underutilization of palm	9,17
		am				tuber even though it has	
						high nutritive value	
						Poor shelf life for fresh	

2.8 Priority thrust areas

S. No	Thrust area
1	Promotion of soil test based nutrient management
2	Improvement of soil fertility through sustainable practices
3	Introduction of high yielding, improved crop varieties in agriculture and horticulture
4	Promotion of ICM practices for major crops like Paddy, Banana, Chilli, Maize, Black gram, Green gram, Tomato, Onion
	and Cotton
5	Promotion of ecological pest control measures and organic farming techniques
6	Promotion of Bio fertilizers and Vermicompost usage
7	Promoting Tree planting in wastelands and in the backyards
8	Ensuring nutritional security of farm women and children through Kitchen gardening, storage and healthy cooking habits
9	Promotion of value added product preparation from Prosopis juliflora, milk, fish, banana, minor millets and vegetables
10	Promotion of IFS model farming system
11	Promotion of drought mitigation measure
12	Promotion of alternative poultry farming, improved backyard poultry breeds, and artificial incubation of eggs.
13	Awareness creation on drought mitigation and promotion of appropriate agronomic techniques
14	Comprehensive disease control measures in livestock
15	Feeding and breeding management in cattle and goats
16	Promotion of inland freshwater fish cultivation in village ponds
17	Promotion of EDP and Capacity building

PART 3 – TECHNICAL ACHIEVEMENTS

3A. Details of target and achievements of mandatory activities

		OFT		FLD				
		1		2				
Numb	per of OFTs	Num	ber of farmers	Number of FLDs		Number of farmers		
Targets	Achievement	Targets	Achievement	Targets	Achievement	Targets	Achievement	
6	5	60	60 50 8 8 80		80	80		
	Т	raining			Extension	n Programmes		
		3				4		
Numbe	er of Courses	Numbe	er of Participants	Number	of Programmes	Number of	of participants	
Targets	Achievement	Targets	Achievement	Targets	Achievement	Targets	Achievement	
75	65	1800	1611	1042	945	14300	17956	
	Seed Pr	oduction (Qt	l)		Planting 1	naterials (Nos)		
		5				6		
,	Target	А	chievement	,	Target	Achi	evement	
Seed Co (F Azolla Subal 29.50 Hedg Green Black Black Total		Co (FS) 29, Azolla – 0.1 Subabul – 0.1 Subabul – 0 Hedge lucer Green gran Black gram Black gram Total = 18.4	Seeu Ki = 0.435 Co (FS) 29, $31 - 2.80$ Azolla - $0.15g$ Subabul - 0.05 Hedge lucerne- 0.39 Green gram (Co 8) - 3.12 Black gram (VBN 4) - 5.00 Black gram VBN-5- 6.50 Totol = 18.47		5500	4	1801	
Liv	estock, poultry st	trains and fin	gerlings (No)		Bio-pr	oducts (Kg)		
	-	7				8		
,	Target	А	chievement	,	Target	Achi	evement	
Poult	try – 2000	1786		50	000 Kg	Bio Fertilizer – 693 Kg Bio Fungicide – 106 Kg EM – 1874 Liter Panchakavya-316 lit Salt Lick – 49 Kg Vermicompost – 3820 Kg Total = 6858kg		

<u>3. B Technology Assessment</u>

A1. Abstract on the number of technologies assessed in respect of crops

Thematic areas	Cereals	Oil seeds	Pulses	Commercial Crops	Vegetables	Fruits	Flower	Plantation crops	Tuber Crops	TOTAL
Integrated Nutrient	1									1
Management										
Varietal Evaluation					1					1
Integrated Crop	n									2
Management	2									2
Total	3	0	0	0	1	0	0	0	0	4

Summary of technologies assessed under various CrOpS by KVKs

Thematic areas	Сгор	Name of the technology assessed	No. of trials	Number of farmers	Area in ha (Per trail covering all the Technological Options)
Integrated Nutrient Management	Farm family	Assessment of glycemic index of traditional paddy varities	5	5	0
Varietal Evaluation	Snake gourd	Assessing the yield performance of snake gourd varieties	5	5	2
Integrated Crop	Paddy	Contingent Plan of Rice cropping for Thamirabarani river Command Area	5	5	3
Management	Paddy	Assessment for drudgery reduction of different weeders in paddy	10	10	0
		TOTAL	25	25	

Summary of technologies assessed under livestock by KVKs

Thematic areas	Name of the livestock enterprise	Name of the technology assessed	No. of trials	No. of farmers
Disease Management	Dairy cow	Assessment of different preventive measures for subclinical mastitis in dairy cow	10	10
Evaluation of Breeds				
Feed and Fodder management				
Nutrition Management				
Production and Management				
Others (Pl. specify)				
Total				

Summary of technologies assessed under various enterprises by KVKs

Thematic areas	Enterprise	Name of the technology assessed	No. of trials	No. of farmers

	00							
OF	ն ոօ.	1						
1	Title of Technology Assessed	Contingent Plan of Rice crop	ping for T	hamira	barani	river		
		Command Area						
2	Thematic area	ICMP						
3	Scientist Involved	Mr. A.Murugan (Agronomy)						
4	Farming Situation	Season : Rabi						
	-	Farm situation : Irrigated						
		Soil type : Clay loam	boil type : Clay loam					
		Fertility status :117.6 :12.	Sertility status :117.6 :12.3 :490 NPK					
		Seasonal rainfall : Rabi seas	on - 454mn	n				
		No of rainy days : 11 days						
5	Problem Definition	Delayed release of water con	sequent to	delayed	d onset	of monsoon,		
		Low organic matter of rice soil	ls.	-				
		Low Yield 4500 kg/ha. Lack of	of awarenes	s fine g	grain va	rieties (60%),		
		Ruling fine varieties BPT - 52	04 is susce	ptible to	b bacter	ial leaf blight		
		(35%), Continuous usage of lo	cal seeds (5	5%)		-		
6	Critical input	Name of Critical inpu	ut	Qty /	trial	Cost / trial		
		Seed (TKM-13)		24 kg		840		
		Green manure seed Daincha		20	Kg	1200		
7	Details of technologies	T1 Crear and SD1	T2 – Gi	reen	Т3	-Rice cum		
	selected for assessment	11 – Green manure SRI	manure l	Drum	gre	en manure		
		Niethod	seede	er	seeder			
8	Source of technology	TNAU	TNA	U		TNAU		

3.C – Technology Assessment in Details

9	Performance of the	Parameters	T1	T2	T3
	Technology with performance	Paddy Seed rate per acre in kg	4	20	20
	indicators	Daincha seed rate pre acre in kg	20	20	10
		Paddy Plant Population/m ²	16	12.6	13.4
		Daincha population /m ²	62	62	20.5
		Labour required for sowing (man hours)/ac	96	4	4
		Labour required for weeding (man hours)/ac	12	18	18
		No of Productive tillers / hill	23.6	21.8	21.6
		No of seeds / panicle	205.8	189.6	181.2
		1000 grain wt.	14.7	14.5	14.6
		Soil pH - before Daincha sowing	768	7.68	7.68
		Soil pH -After harvesting	7.32	7.34	7.64
		OM - Before Daincha sowing	0.21	0.21	0.21
		OM -After harvesting	0.46	0.45	0.25
		N (kg/ac) - Before Daincha sowing	117.6	117.6	117.6
		N (kg/ac) -After harvesting	124.2	128.4	120.0
		P(kg/ac) - Before Daincha sowing	12.3	12.3	12.3
		P (kg/ac) After harvesting	11.8	10.5	9.82
		K (kg/ac) -Before Daincha sowing	490.6	490.6	490.6
		K(kg/ac) - After harvesting	445.4	425.4	420.3
		Leaf folder incidence (%)	9.8%	9.2%	8.9

Annual Report 2017 – 18

Stem borer incidence (%)10.1%10.2%Weed Population weight (g)/ m²Echinocloa crusgalli, Cynodon10.1%					
Weed Population weight (g)/ m ² Echinocloa crusgalli, Cynodon	9.8%				
Echinocloa crusgalli, Cynodon					
dactylon 36.5 68.5	52.4				
Marselia quadrifolla, Echinocola	52.4				
colanam					
cyprus crassqaly, Eclipta prostrate					
Days taken to harvest 132 days 125	126				
days days	days				
Yield/ha (Kg) 7468.2 6890	6820				
Gross Cost in Rs 48622 44202	42410				
Gross Return in Rs 89594.4 84072	81840				
Net Return in Rs 40972.4 39870	39430				
B.C Ratio 1.8 1.9	1.9				
10 Description of the results Direct seeding method avoids nursery establishment, p	ulling up				
seedlings and transplanting them, the labour requirement	for crop				
establishment is negligible. The demand for agricultural labor	ur is at its				
peak during planting time, which forcing the farmers to	pay high				
wages for regular field operations.					
	In place of delayed water release where prior daincha sowing can not				
In place of delayed water release where prior daincha sowin	g can not				
In place of delayed water release where prior daincha sowin be taken up, simultaneous sowing of daincha and paddy s	g can not ed using				
In place of delayed water release where prior daincha sowin be taken up, simultaneous sowing of daincha and paddy s the drum seeder was found to be a good alternative practice a	g can not eed using s sown in				
In place of delayed water release where prior daincha sowin be taken up, simultaneous sowing of daincha and paddy s the drum seeder was found to be a good alternative practice a this trial where the total factor productivity obtained	g can not eed using s sown in rom SRI				
In place of delayed water release where prior daincha sowin be taken up, simultaneous sowing of daincha and paddy s the drum seeder was found to be a good alternative practice a this trial where the total factor productivity obtained method and drum seeder method is almost equal becau	g can not eed using s sown in rom SRI se of the				
In place of delayed water release where prior daincha sowin be taken up, simultaneous sowing of daincha and paddy s the drum seeder was found to be a good alternative practice a this trial where the total factor productivity obtained method and drum seeder method is almost equal becau increased production cost in SRI when compared to dru	g can not eed using s sown in rom SRI se of the m seeder				
In place of delayed water release where prior daincha sowin be taken up, simultaneous sowing of daincha and paddy s the drum seeder was found to be a good alternative practice a this trial where the total factor productivity obtained method and drum seeder method is almost equal becau increased production cost in SRI when compared to dru method.	g can not eed using s sown in from SRI se of the m seeder				
In place of delayed water release where prior daincha sowin be taken up, simultaneous sowing of daincha and paddy s the drum seeder was found to be a good alternative practice a this trial where the total factor productivity obtained method and drum seeder method is almost equal becau increased production cost in SRI when compared to dru method. Sowing with Paddy Drum Seeder drastically reduced the m	g can not eed using s sown in rom SRI se of the m seeder an power				
In place of delayed water release where prior daincha sowin be taken up, simultaneous sowing of daincha and paddy so the drum seeder was found to be a good alternative practice a this trial where the total factor productivity obtained method and drum seeder method is almost equal becau increased production cost in SRI when compared to dru method. Sowing with Paddy Drum Seeder drastically reduced the m in raising the nursery, transplanting, etc., the labour red	g can not eed using s sown in rom SRI se of the m seeder an power uired for				
In place of delayed water release where prior daincha sowin be taken up, simultaneous sowing of daincha and paddy s the drum seeder was found to be a good alternative practice a this trial where the total factor productivity obtained method and drum seeder method is almost equal becau increased production cost in SRI when compared to dru method. Sowing with Paddy Drum Seeder drastically reduced the n in raising the nursery, transplanting, etc., the labour red transplanting paddy seedlings is only 2 against 30 manpower	g can not eed using s sown in rom SRI se of the m seeder an power uired for required				
In place of delayed water release where prior daincha sowin be taken up, simultaneous sowing of daincha and paddy so the drum seeder was found to be a good alternative practice a this trial where the total factor productivity obtained method and drum seeder method is almost equal becau increased production cost in SRI when compared to dru method. Sowing with Paddy Drum Seeder drastically reduced the n in raising the nursery, transplanting, etc., the labour red transplanting paddy seedlings is only 2 against 30 manpowe in traditional method of cultivation. But drum seeder and	g can not eed using s sown in rom SRI se of the m seeder an power uired for required rice cum				
In place of delayed water release where prior daincha sowin be taken up, simultaneous sowing of daincha and paddy so the drum seeder was found to be a good alternative practice a this trial where the total factor productivity obtained method and drum seeder method is almost equal becau increased production cost in SRI when compared to dru method. Sowing with Paddy Drum Seeder drastically reduced the n in raising the nursery, transplanting, etc., the labour red transplanting paddy seedlings is only 2 against 30 manpowe in traditional method of cultivation. But drum seeder and Daincha seeder technology required good drainage fa	g can not eed using s sown in rom SRI se of the m seeder an power uired for required rice cum ilities to				
In place of delayed water release where prior daincha sowin be taken up, simultaneous sowing of daincha and paddy s the drum seeder was found to be a good alternative practice a this trial where the total factor productivity obtained method and drum seeder method is almost equal becau increased production cost in SRI when compared to dru method. Sowing with Paddy Drum Seeder drastically reduced the n in raising the nursery, transplanting, etc., the labour red transplanting paddy seedlings is only 2 against 30 manpowe in traditional method of cultivation. But drum seeder and Daincha seeder technology required good drainage fai increase the germination % of paddy and Daincha seeds. SI	g can not eed using s sown in rom SRI se of the m seeder an power uired for rice cum ilities to I method				
In place of delayed water release where prior daincha sowin be taken up, simultaneous sowing of daincha and paddy so the drum seeder was found to be a good alternative practice a this trial where the total factor productivity obtained method and drum seeder method is almost equal becau increased production cost in SRI when compared to dru method. Sowing with Paddy Drum Seeder drastically reduced the n in raising the nursery, transplanting, etc., the labour red transplanting paddy seedlings is only 2 against 30 manpowed in traditional method of cultivation. But drum seeder and Daincha seeder technology required good drainage fa increase the germination % of paddy and Daincha seeds. SI It requires 96 man hours for transplanting where as dru	g can not eed using s sown in rom SRI se of the m seeder an power uired for r required rice cum ilities to I method m seeder				
In place of delayed water release where prior daincha sowin be taken up, simultaneous sowing of daincha and paddy s the drum seeder was found to be a good alternative practice a this trial where the total factor productivity obtained method and drum seeder method is almost equal becau increased production cost in SRI when compared to dru method. Sowing with Paddy Drum Seeder drastically reduced the n in raising the nursery, transplanting, etc., the labour red transplanting paddy seedlings is only 2 against 30 manpowe in traditional method of cultivation. But drum seeder and Daincha seeder technology required good drainage fa increase the germination % of paddy and Daincha seeds. SI It requires 96 man hours for transplanting where as dru requires 4man hours only for sowing and it reduces time re	g can not eed using s sown in rom SRI se of the m seeder an power uired for r required rice cum ilities to I method m seeder juired for				
In place of delayed water release where prior daincha sowin be taken up, simultaneous sowing of daincha and paddy s the drum seeder was found to be a good alternative practice a this trial where the total factor productivity obtained method and drum seeder method is almost equal becau increased production cost in SRI when compared to dru method. Sowing with Paddy Drum Seeder drastically reduced the n in raising the nursery, transplanting, etc., the labour red transplanting paddy seedlings is only 2 against 30 manpowe in traditional method of cultivation. But drum seeder and Daincha seeder technology required good drainage fa increase the germination % of paddy and Daincha seeds. SI It requires 96 man hours for transplanting where as dru requires 4man hours only for sowing and it reduces time re nursery preparation, transplanting and weeding works.	g can not eed using s sown in rom SRI se of the m seeder an power uired for r required rice cum ilities to I method m seeder juired for Fhe crop				
In place of delayed water release where prior daincha sowing be taken up, simultaneous sowing of daincha and paddy so the drum seeder was found to be a good alternative practice a this trial where the total factor productivity obtained method and drum seeder method is almost equal becau increased production cost in SRI when compared to dru method. Sowing with Paddy Drum Seeder drastically reduced the n in raising the nursery, transplanting, etc., the labour red transplanting paddy seedlings is only 2 against 30 manpower in traditional method of cultivation. But drum seeder and Daincha seeder technology required good drainage fa increase the germination % of paddy and Daincha seeds. SI It requires 96 man hours for transplanting where as dru requires 4man hours only for sowing and it reduces time re nursery preparation, transplanting and weeding works. duration reduced by 6-7 days when compared to the Dai	g can not eed using s sown in rom SRI se of the m seeder an power uired for r required rice cum ilities to I method m seeder juired for Fhe crop icha -rice				
In place of delayed water release where prior daincha sowin be taken up, simultaneous sowing of daincha and paddy se the drum seeder was found to be a good alternative practice a this trial where the total factor productivity obtained method and drum seeder method is almost equal becau increased production cost in SRI when compared to dru method. Sowing with Paddy Drum Seeder drastically reduced the n in raising the nursery, transplanting, etc., the labour red transplanting paddy seedlings is only 2 against 30 manpowed in traditional method of cultivation. But drum seeder and Daincha seeder technology required good drainage fa increase the germination % of paddy and Daincha seeds. SI It requires 96 man hours for transplanting where as dru requires 4man hours only for sowing and it reduces time re nursery preparation, transplanting and weeding works. duration reduced by 6-7 days when compared to the Dai cultivation methods. The cost of cultivation was also reduced	g can not eed using s sown in rom SRI se of the m seeder an power uired for required rice cum ilities to I method m seeder juired for The crop icha -rice by 20%.				
In place of delayed water release where prior daincha sowin be taken up, simultaneous sowing of daincha and paddy so the drum seeder was found to be a good alternative practice a this trial where the total factor productivity obtained method and drum seeder method is almost equal becau increased production cost in SRI when compared to dru method. Sowing with Paddy Drum Seeder drastically reduced the n in raising the nursery, transplanting, etc., the labour red transplanting paddy seedlings is only 2 against 30 manpowed in traditional method of cultivation. But drum seeder and Daincha seeder technology required good drainage fa increase the germination % of paddy and Daincha seeds. SI It requires 96 man hours for transplanting where as dru requires 4man hours only for sowing and it reduces time re nursery preparation, transplanting and weeding works. duration reduced by 6-7 days when compared to the Dai cultivation methods. The cost of cultivation was also reduced In this assessment the yield obtained in SRI system is more.	g can not eed using s sown in rom SRI se of the m seeder an power uired for r required rice cum ilities to I method m seeder puired for Fhe crop icha -rice by 20%.				
In place of delayed water release where prior daincha sowin be taken up, simultaneous sowing of daincha and paddy s the drum seeder was found to be a good alternative practice a this trial where the total factor productivity obtained method and drum seeder method is almost equal becau increased production cost in SRI when compared to dru method. Sowing with Paddy Drum Seeder drastically reduced the n in raising the nursery, transplanting, etc., the labour red transplanting paddy seedlings is only 2 against 30 manpowed in traditional method of cultivation. But drum seeder and Daincha seeder technology required good drainage fa increase the germination % of paddy and Daincha seeds. SI It requires 96 man hours for transplanting where as dru requires 4man hours only for sowing and it reduces time re nursery preparation, transplanting and weeding works. duration reduced by 6-7 days when compared to the Dai cultivation methods. The cost of cultivation was also reduced In this assessment the yield obtained in SRI system is more. Though the yield /ha is higher in SRI method, the BCR is h	g can not eed using s sown in rom SRI se of the m seeder an power uired for required rice cum ilities to I method m seeder quired for Fhe crop icha -rice by 20%.				
In place of delayed water release where prior daincha sowin be taken up, simultaneous sowing of daincha and paddy so the drum seeder was found to be a good alternative practice at this trial where the total factor productivity obtained method and drum seeder method is almost equal becau increased production cost in SRI when compared to dru method. Sowing with Paddy Drum Seeder drastically reduced the n in raising the nursery, transplanting, etc., the labour red transplanting paddy seedlings is only 2 against 30 manpowed in traditional method of cultivation. But drum seeder and Daincha seeder technology required good drainage fa increase the germination % of paddy and Daincha seeds. SI It requires 96 man hours for transplanting where as dru requires 4man hours only for sowing and it reduces time re nursery preparation, transplanting and weeding works. duration reduced by 6-7 days when compared to the Dai cultivation methods. The cost of cultivation was also reduced In this assessment the yield obtained in SRI system is more. Though the yield /ha is higher in SRI method, the BCR is h the SRI due to less production cost	g can not eed using s sown in rom SRI se of the m seeder an power uired for r required rice cum ilities to I method m seeder puired for The crop icha -rice by 20%.				
In place of delayed water release where prior daincha sowin be taken up, simultaneous sowing of daincha and paddy s the drum seeder was found to be a good alternative practice a this trial where the total factor productivity obtained method and drum seeder method is almost equal becau increased production cost in SRI when compared to dru method. Sowing with Paddy Drum Seeder drastically reduced the n in raising the nursery, transplanting, etc., the labour red transplanting paddy seedlings is only 2 against 30 manpowe in traditional method of cultivation. But drum seeder and Daincha seeder technology required good drainage fa increase the germination % of paddy and Daincha seeds. SI It requires 96 man hours for transplanting where as dru requires 4man hours only for sowing and it reduces time re nursery preparation, transplanting and weeding works. duration reduced by 6-7 days when compared to the Dai cultivation methods. The cost of cultivation was also reduced In this assessment the yield obtained in SRI system is more. Though the yield /ha is higher in SRI method, the BCR is h the SRI due to less production cost Duration of the crop is found to be reduced by 7-10 d	g can not eed using s sown in rom SRI se of the m seeder an power uired for r required rice cum ilities to I method m seeder quired for The crop acha -rice by 20%. gher than				
In place of delayed water release where prior daincha sowin be taken up, simultaneous sowing of daincha and paddy s the drum seeder was found to be a good alternative practice a this trial where the total factor productivity obtained method and drum seeder method is almost equal becau increased production cost in SRI when compared to dru method. Sowing with Paddy Drum Seeder drastically reduced the n in raising the nursery, transplanting, etc., the labour red transplanting paddy seedlings is only 2 against 30 manpowe in traditional method of cultivation. But drum seeder and Daincha seeder technology required good drainage fa increase the germination % of paddy and Daincha seeds. SI It requires 96 man hours for transplanting where as dru requires 4man hours only for sowing and it reduces time re nursery preparation, transplanting and weeding works. duration reduced by 6-7 days when compared to the Dai cultivation methods. The cost of cultivation was also reduced In this assessment the yield obtained in SRI system is more. Though the yield /ha is higher in SRI method, the BCR is h the SRI due to less production cost Duration of the crop is found to be reduced by 7-10 d compared to SRI System	g can not eed using s sown in rom SRI se of the m seeder an power uired for r required rice cum ilities to I method m seeder quired for The crop acha -rice by 20%. gher than ays when				
In place of delayed water release where prior daincha sowin be taken up, simultaneous sowing of daincha and paddy se the drum seeder was found to be a good alternative practice a this trial where the total factor productivity obtained method and drum seeder method is almost equal becau increased production cost in SRI when compared to dru method. Sowing with Paddy Drum Seeder drastically reduced the n in raising the nursery, transplanting, etc., the labour red transplanting paddy seedlings is only 2 against 30 manpowe in traditional method of cultivation. But drum seeder and Daincha seeder technology required good drainage fa increase the germination % of paddy and Daincha seeds. SI It requires 96 man hours for transplanting where as dru requires 4man hours only for sowing and it reduces time re nursery preparation, transplanting and weeding works. duration reduced by 6-7 days when compared to the Dai cultivation methods. The cost of cultivation was also reduced In this assessment the yield obtained in SRI system is more. Though the yield /ha is higher in SRI method, the BCR is h the SRI due to less production cost Duration of the crop is found to be reduced by 7-10 d compared to SRI System 11 Feedback from farmers Among the opinions from farmers stated that the Farmers	g can not eed using s sown in rom SRI se of the m seeder an power uired for required for required for crequired for lities to l method m seeder juired for The crop icha -rice by 20%. gher than ays when are of the				
In place of delayed water release where prior daincha sowin be taken up, simultaneous sowing of daincha and paddy se the drum seeder was found to be a good alternative practice a this trial where the total factor productivity obtained method and drum seeder method is almost equal becau increased production cost in SRI when compared to dru method. Sowing with Paddy Drum Seeder drastically reduced the n in raising the nursery, transplanting, etc., the labour red transplanting paddy seedlings is only 2 against 30 manpowed in traditional method of cultivation. But drum seeder and Daincha seeder technology required good drainage fa increase the germination % of paddy and Daincha seeds. SI It requires 96 man hours for transplanting where as dru requires 4man hours only for sowing and it reduces time re nursery preparation, transplanting and weeding works. duration reduced by 6-7 days when compared to the Dai cultivation methods. The cost of cultivation was also reduced In this assessment the yield obtained in SRI system is more. Though the yield /ha is higher in SRI method, the BCR is h the SRI due to less production cost Duration of the crop is found to be reduced by 7-10 d compared to SRI System Among the opinions from farmers stated that the Farmers opinion that they will be satisfied even if they just achie	g can not eed using s sown in rom SRI se of the m seeder an power uired for r required rice cum ilities to I method m seeder quired for The crop icha -rice by 20%. gher than iys when ure of the e normal				
In place of delayed water release where prior daincha sowir be taken up, simultaneous sowing of daincha and paddy s the drum seeder was found to be a good alternative practice a this trial where the total factor productivity obtained method and drum seeder method is almost equal becau increased production cost in SRI when compared to drum method. Sowing with Paddy Drum Seeder drastically reduced the n in raising the nursery, transplanting, etc., the labour red transplanting paddy seedlings is only 2 against 30 manpowed in traditional method of cultivation. But drum seeder and Daincha seeder technology required good drainage fa increase the germination % of paddy and Daincha seeds. SI It requires 96 man hours for transplanting where as dru requires 4man hours only for sowing and it reduces time re nursery preparation, transplanting and weeding works. duration reduced by 6-7 days when compared to the Dai cultivation methods. The cost of cultivation was also reduced In this assessment the yield obtained in SRI system is more. Though the yield /ha is higher in SRI method, the BCR is h the SRI due to less production cost11Feedback from farmers11Feedback from farmers	g can not eed using s sown in rom SRI se of the m seeder an power uired for r required rice cum ilities to I method m seeder quired for The crop acha -rice by 20%. gher than ays when ure of the e normal ave about				
11 Feedback from farmers 11 Feedback from farmers 11 Feedback from farmers 11 Feedback from farmers	g can not eed using s sown in rom SRI se of the m seeder an power uired for required for required for The crop icha -rice by 20%. gher than ays when are of the e normal ave about sery and				
11 Place of delayed water release where prior daincha sowing be taken up, simultaneous sowing of daincha and paddy set the drum seeder was found to be a good alternative practice at this trial where the total factor productivity obtained method and drum seeder method is almost equal becau increased production cost in SRI when compared to drumethod. Sowing with Paddy Drum Seeder drastically reduced the n in raising the nursery, transplanting, etc., the labour reducation paddy seedlings is only 2 against 30 manpower in traditional method of cultivation. But drum seeder and Daincha seeder technology required good drainage fa increase the germination % of paddy and Daincha seeds. SI It requires 96 man hours for transplanting where as drurequires 4man hours only for sowing and it reduces time re nursery preparation, transplanting and weeding works. duration reduced by 6-7 days when compared to the Dai cultivation methods. The cost of cultivation was also reduced. In this assessment the yield obtained in SRI system is more. Though the yield /ha is higher in SRI method, the BCR is h the SRI due to less production cost 11 Feedback from farmers Among the opinions from farmers stated that the Farmers opinion that they will be satisfied even if they just achie yield with the drum-seeding technology because they can s Rs.1500-2500per acre in costs incurred for raising nu transplantion.	g can not eed using s sown in rom SRI se of the m seeder an power uired for r required rice cum ilities to I method m seeder quired for The crop icha -rice by 20%. gher than ays when ure of the e normal ave about sery and				
In place of delayed water release where prior daincha sowing be taken up, simultaneous sowing of daincha and paddy set the drum seeder was found to be a good alternative practice at this trial where the total factor productivity obtained method and drum seeder method is almost equal becau increased production cost in SRI when compared to drum the drum seeder drastically reduced the n in raising the nursery, transplanting, etc., the labour reductional method of cultivation. But drum seeder and Daincha seeder technology required good drainage faincrease the germination % of paddy and Daincha seeds. SI It requires 96 man hours for transplanting where as dru requires 4man hours only for sowing and it reduces time re nursery preparation, transplanting and weeding works. duration methods. The cost of cultivation was also reduced. In this assessment the yield obtained in SRI system is more. Though the yield /ha is higher in SRI method, the BCR is h the SRI due to less production cost 11 Feedback from farmers 11 Feedback from farmers	g can not eed using s sown in rom SRI se of the m seeder an power uired for r required rice cum ilities to I method m seeder quired for The crop acha -rice by 20%. gher than ays when ure of the e normal ave about sery and any time				
11 Field	g can not eed using s sown in rom SRI se of the m seeder an power uired for required for required for fities to fi method m seeder quired for The crop icha -rice by 20%. gher than ays when ure of the e normal ave about sery and any time rement or				
11 Field	g can not eed using s sown in rom SRI se of the m seeder an power uired for r required rice cum ilities to I method m seeder quired for The crop icha -rice by 20%. gher than ays when rre of the e normal ave about sery and any time rement or				
11 Feedback from farmers 11 Feedback from farmers 11 Feedback from farmers 11 Feedback from farmers 12 Constraints identified and	g can not eed using s sown in rom SRI se of the m seeder an power uired for r required rice cum ilities to I method m seeder quired for The crop icha -rice by 20%. gher than ays when are of the e normal ave about sery and any time rement or				

		Uneven seed dropping from the drum seeders due to clogging with clay in heavy clay soils with soil puffiness : The height of the drum seeder need to be increased for heavy clay soils
		Heavy downpour immediately after sowing the seed with drum seeder affected the germination percentage
		Seed eaten away by birds after sowing with drum seeder necessitates extra labour to scare away the birds for 7 days
13	Feed back to the scientist who developed the technology:	The height of the drum seeder need to be increased for heavy clay soils to avoid clogging of holes in the drum seeder
14	Final recommendation	In place of delayed water release where prior daincha sowing can not be taken up, simultaneous sowing of daincha and paddy seed using the drum seeder was found to be a good alternative practice to improve the productivity of paddy cultivation

OF	Г по.	2					
1	Title of Technology Assessed	Assessing the yield perfo	rmance of snake	gourd v	arieties		
2	Thematic area	Vegetable production tec	chnology				
3	Scientist involved	Mr. P. Velmurugan (Ho	rticulture)				
4	Farming situation	Season : Rabi/	summer 2017-18				
		Farm situation : Irrigat	ted				
		Soil type : Sand	y clay loam				
5	Problem Definition	Non availability of high y	ielding variety see	ds in tim	ie		
		Little awareness on Impro	ved varieties	c			
		Usage of Authur local va	ariety seeds and r	euse of	own hyl	orid seeds	
		leading to Low Production	n, Productivity and	l net reti	irn, Pest	(fruit fly),	
		Disease(Mosaic) problems	S,				
		Crop area in Siruinandananur. 480 acres					
		Local variety yielding an average of 20.0 ton/ha District yield.					
		22.4101/11a, Potential yield	a of the improved	variety :	55 1011/1	la rielu	
6	Critical inputs	Nome of Critics	linnut	Oty / 1	trial C	ost / trial	
0	Critical inputs	Snake gourd(Co_2) varie	ty seeds	$\frac{\mathbf{Q}\mathbf{Q}\mathbf{y}}{1k\sigma}$			
		Snake gourd (Baby)variet	v seeds	1kg	20	2000	
		EM	y seeds	2lit	24	250	
		Field board		1	3	50	
				_			
7	Details of technologies				T 2	D . 1	
	selected for assessment	II - Autnur - FP	12 - C02		13-	вару	
8	Source of technology	Local	TNAU 2010		KAU	2006	
	Performance of the	Parameter	rs	T1	T2	T3	
9	Technology with performance	Fruit length (cm)		40.5	41.0	48.5	
	indicators	Fruit weight (gm)		310	375	410	
		Fruit girth (cm)		12.5	15.5	11.5	
		No. of fruit/plant		8.5	10	15.5	
		Fruit yield /ha (Qtl)	187.10	202.50	367.0		
		B.C Ratio		1.60	1.80	3.71	
10	Description of results	The baby variety resulted	in high fruit yield	than the	Co – 2 a	ind local	
		variety. Though the fruit g	girth is lower than	other tw	o varitie	s. The	
		fruit length and no. of frui	ts were higher that	n other t	wo varie	ties	
		which contributed to this total yield of 367qtl/ha					

		1
11	Feedback from farmers	Though the yield is more than the other two varieties. The pale white
		color is the problem with baby variety. Attractive green colour will be
		better to market this fruit. But is highly preferred for Kerala market.
12	Constraints identified and	Getting seeds from KAU is time is the constraints. The color of the
	feedback for research	fruit should be of green or green lined with white marking will be
		suited to Thoothukudi market
13	Feedback to the scientist who	The color of the fruit should be green to fetch more price in the local
	developed the technology	market. But is highly preferred for Kerala market.
14	Final recommendation	Baby variety can be popularized in Thoothukudi district for its high
		production capacity

OF	Г по.	3					
1	Title of Technology Assessed	Assessment of glycemic index of	f tradition	al padd	y variet	ties	
2	Thematic area	Nutrition					
3	Scientist involved	Mrs. S. Sumathi (Home Science)				
4	Farming situation	Irrigated					
5	Problem Definition	In Manjaneerkayal village the women SHG members reported that most of them suffer from diabetes due to consumption of polished rice. The therapeutic properties of traditional rice varieties are not known among the farm women. Hence the incidence of diabetes among the farm family members occurs due to excessive carbohydrate intake and low fiber intake in the diet.					
6	Critical Inputs	Name of Critical input		Qty	/ trial	Cost / trial	
		Glucose		5	50g	9.5	
		Milled rice flakes		1	50g	9	
		Mapilla samba rice flakes		1	50g	15	
		Kuruvikar rice flakes	1	50g	18		
		Lab Estimate for available carboh	3 sa	ample	67.5		
		Blood glucose level estimation ch	arges	20 t	esting	196	
		Total for each trial				315	
		TOTAL for 20) trials			6300	
7	Details of technologies selected for assessment	T1 – Milled rice flakes (Ambai 16)	T2 – Ma samba flake	pillai rice es	T3 Kuru f	– Red vikar rice lakes	
8	Source of technology	SUGRS	SUG	RS	SU	JUGRS	
	Performance of the	Parameters		T1	T2	T3	
9	Technology with performance indicators	Glycemic index value		96.2	67.9	54.3	
10	Description of the results	Flaked rice and parboiled rice have been reported to be having lower glycemic index than raw rice. Roasted flaked rice and puffed rice may further increase the dietary fiber and pass the digestive tract to be considered as pre-biotic foods. The ability of a food item to raise the blood sugar is measured in terms of glycemic index. Foods which are absorbed slowly raise the blood sugar levels slowly and have a low glycemic index. Whereas, foods which are absorbed fast, raise the blood sugar levels fast and have a high glycemic index. The GI (glycemic index) represents the rise in person's blood sugar level two hours after consumption of the food. The glycemic effects of foods depends on a number of factors, such as the type of carbohydrate, physical entrapment of the carbohydrate molecules					

within the food, fat and protein content of the food and organic acids or their salts in the meal. The glycemic index of the rice flakes were calculated by taking the average of the glycemic response of both the reference and test food at 30, 60, 90 and 120 minutes and a glycemic curve was constructed. The incremental area under blood glucose response curve was calculated

Ten farm women were selected for evaluating the glycemic index and they were between 30-35 years of age. The farm women who had fasting blood glucose level of 77-90 mg/dl, and who did not have any complications were selected. On the fourth day fasting blood glucose was estimated and then all of them were served with 50g of glucose for breakfast.

Blood samples were collected every half an hour for two hours. The fasting blood was drawn to estimate fasting blood glucose and then they were served the milled ambai-16, kuruvikar and mapillai samba flakes containing 50g digestible (available) carbohydrate. It was ascertained that the subjects did not leave any plate waste and took same length of time for consuming the breakfast served. The blood samples were collected at periodic intervals of 0, 30, 60, 90 &120 minutes. Blood glucose levels of the entire sample were estimated.

Determination of glycemic index

The Glycemic Index of the standardized recipes was calculated by taking the average of the glycemic response of both the reference and test food at 30, 60, 90 and 120 minutes and a glycemic curve was constructed. The incremental area under blood glucose response curve was calculated

Glycemic index is a number. It gives you an idea about how fast your body converts the carbohydrates in a food into glucose. Two foods with the same amount of carbohydrates can have different glycemic index numbers.

The smaller the number, the less impact the food has on blood sugar. 55 or less = Low (good) 56-69 = Medium 70 or higher = High (bad)

		The GI value of Kuruvikar flakes (54.3%) falls under low GI value food category followed by Mappillai samba rice flakes (67.9%) which falls under medium GI value food category and the ambai-16 milled rice flakes (96.2%) falls under high GI value food category according to our trials with rural women folk living near coastal region in Thoothukudi district.
11	Feedback from farmers	Initially the farm women were reluctant about the assessment of glycemic index of traditional paddy varieties. After their involvement they were eager to know about their blood glucose level in each test of different traditional rice flakes. The farm women on seeing the result they wanted to cultivate the traditional variety of paddy and consume in their daily diet and they also realized about the importance of traditional rice flakes.
12	Constraints identified and feedback for research	It is very difficult to control the farm women to be in fasting condition for 2 hours in the early morning only by taking 50gms of carbohydrate. They felt bad without even having tea or coffee in the early morning. The women who are affected with diabetes are willing to have a blood glucose level check in empty stomach than non- affected women. Still we convinced them to have a study so that they can realize about the importance of consuming traditional paddy varieties. In between the 2 hours interval some farm women consume the extra food and the value becomes wrong so again to get the correct assessment once again we need to conduct the trial after giving repeated instructions.
13	Feedback to the scientist who develop the technology	Traditional brown rice varities are having low glycemic index when compared to white rice and hence on health grounds it is better to restore and conserve the traditional brown rice varieties or develop a similar variety with low GI with high yielding properties.
14	Final recommendation	Kuruvikar has low glycemic index compare to Mapila samba which has medium Glycemic index value. Ambai 16 polished rice has high glycemic index compared to Mapilla samba and kuruvikar rice flakes. So it is better to consume low GI index value rice varieties for health conscious people and particularly the diabetic patients.

OFT	no.	4				
1	Title of Technology Assessed	Assessment for drudgery reduction of dif	ferent weede	ers in paddy		
2	Thematic area	Drudgery reduction				
3	Scientist involved	Mrs. S. Sumathi (Home Science)				
4	Farming situation	Season : Rabi				
		Farm situation : Irrigated				
		Soil type : Sandy clay loam				
		Fertility status :117.6 :12.3 :490 NPK				
		Seasonal rainfall : Rabi season - 454mm				
		No of rainy days : 11 days				
5	Problem Definition	Almost all the farmers in Manjaneerkayal	do their weed	ding in paddy		
		field through hand weeding only. But now	a day they a	re not getting		
		enough labour as it is very drudgery prone	for the farm	women who		
		do the weeding operations in wet land.	Increase in	labour wages		
		resulted in high cost for hand weeding. High cost for manual				
		weeding (Rs.6000/ha). Man power requirement 10 female / weeding /				
		ac				
6	Critical input	Name of Critical input	Qty / trial	Cost / trial		

Annual Report 2017 – 18

		Cono weeder		1			1500
		Modified cono weeder		1			1670
		Grip strength dynamometer	er		1		4159
		T	OTAL				7329
6	Details of technologies	T1 – Manual weeding	$T_2 - Cono wee$	der	T3 -	– Modif	ied cono
	selected for assessment		12 Cono wee	uci		weed	er
7	Source of technology		TNAU M			Mr.Bal KVK K	ram arur
8	Performance of the	Parameter	ſS	T 1	L	T2	T3
	Technology with performance	Weight of the weeder in k	g			6	5
	indicators	Blade width (cm)				13	19
		No of blades				12	8
		No of weeds (in sq. Meter	r) Marselia	45.	6	43.4	45.2
		quadrifolla,echinocola col	onum,Cyprus				
		crassqaly, Eclipta prostrate, Cynodon					
		dactylon Before (15^{m} day	()	6		0.6	7.4
		After (30^{-1} day)	-)	6.8	5	8.6	/.4
		(No of labour/ na/ weeding	g)	24 15/	+ -	0	24.5
		Recting time (nr)/na		177	2	3/	34.5
		$\Delta ftor$		144/	94	153/90	133/93
		$\frac{\text{Alter}}{\text{Gross cost}(\mathbf{P}_{S}/\mathbf{h}_{2})}$		133/	09 60	131/90	140/00
		Gross return		690	30	78096	42800 80362
		Net income		261	70	35176	37562
		Yield (kg/ha)			0	6010	5994
		BC ratio			1	1.81	1.87
9	Description of the results	The modified cono week	der is more suita	able t	han	cono w	eeder in
	I	puddled wet land paddy fi	ield as it is easy to	o oper	ate a	nd the w	veight of
		the weeder is less. It tak	tes less time for	weed	ing a	nd the	weeding
		efficiency is also high wh	en compared to T	NAU	mod	lel cono	weeder.
		In modified cono weeder	the air tight cone	itself	f faci	litate in	floating
		of the weeder. Hence no	need for separat	e floa	it as	in TNA	U Cono
10		weeder.	11.02 1				
10	Feedback from farmers	The farmers felt that the r	nodified cono we	eder 1	s less	drudge	ry prone
		compare to cono weeder	and manual wee	eding.	Ine	modifi	ed cono
		as it is easy to operate by	farm women and a	the w	wet l	of the y	uy neiu
		as it is easy to operate by	tarill wolliell allu	weed	ing a	nd the	weeding
		efficiency is also high		weeu	ing a		weeuing
11	Constraints identified and	The main constraint faced	by the farmer is t	aking	line	sowing	Thev
_	feedback for research	feel difficult to take the w	eeder and place in	the re	ow.	8	- 5
12	Feedback to the scientist who		· r · · · · ·				
	develop the technology						
13	Final recommendation	The Modified cono weede	er is well suited for	or pud	dled	clayee v	vet land
		paddy fields when compar	red to TNAU cond	weed	der		
		paddy nerds when compar		,	401		

OF	Г No.	5		
1	Thematic area	Disease prevention in livestock		
2	Title	Assessment of preventive measures for subclinical mastitis in		
		dairy cows		
3	Scientists involved	Dr.V.Srinivasan and S.Sumathi		
4	Details of farming situation	Cross bred dairy cows maintained under semi intensive system of		

5	DescribethefarmingsituationincludingSeason,Farmingsituation(RF/Irrigated),Soiltype,fertilityStatus,Seasonalrainfall(mm)No.ofdaysetc(about 500 words)Problemdefinition /description:(oneparagraph)TechnologyAssessed:T1Farmerspractice			rearing in semi arid southern zone near coastal region with the annual mean rain fall of 652mm in 14 rainy days. The cows were allowed for grazing on the fields for 6-8 hours per day and hand milked twice daily in the homestead and each cows were provided with little bit of concentrate like wheat bran- 2kg, mixture cake- 2kg, gruel and other house hold food waste daily. The average milk yield per day per cow is 6.5lit. High somatic cell count, incidence of subclinical mastitis, poor shelf life of milk, reduced milk yield due to subclinical mastitis Preventing the cattle from lying down by offering greens/dry fodder immediately after milking to reduce the incidence of mastitis keeping the shed clean, before milking washing the udder with water				
	12			subclinical r	mastitis using TAN	UCHE	K SCC kit	
7	Critical inputs given		Qua trial	intity per	Value Rs.			
	TANUCHER SCC 1/3+		<u> </u>		200			
8	TANUCHER SCC KI	Dag	1 ulte		300		<u> </u>	
Performan middle lact				nance of the lactation wer	nce of the technology in 60 days of observation period , cows with ctation were selected for the trial purpose			
	Assessment			T1 -	T1 _ T2 _			
	Source and Vear						TANUVAS 2016	
% in mast	cidence of subclinical			20%			0	
% in mast	cidence of clinical itis			0			0	
Som	atic cell count in milk			$1.4 \text{ X}10^5$			1.0×10^5	
Milk	vield (lit) /lactation		1092		2		2091	
Gros	ss Cost/lactation			3450	00		38100	
Gros	ss Return/lactation			49800			52275	
Net	Return in Rs			1530	00		14175	
B.C	Ratio			1.44	1		1.37	
	Farmers Feedbac	ck		Feed	d back to the scien	tist wh	o developed the technology	y
Spraying mastiguard solution after milking with the spray bottle is an easy method but the cost of the spray bottle is very high and prohibitive for small farmers			The cost of one mastiguard spray bottle is around Rs.300 which is sufficient for one month only for one cow and hence the cost per day for teat dipping is Rs.10 which is on the very higher side and it needs to be reduced to less than Rs.2 per day so that it will be affordable to the small holder livestock farmers Transporting the liquid material (mastiguard spray) through parcel service was very risky and hence proper protective packing is essential for long distance transport of the spray solution. Second thing the enhancer solution is too little or dried up in the plastic bottle container and in some of the test kits there is no enhancer solution available in the bottle and this also need to be addressed by the scientist who developed this technology.					

The reduction in milk yield after the incidence of subclinical mastitis is 20.66% in farmers Descripti on of the practice where as in mastiguard teat spray group there is no reduction in milk yield in any of the **Result:** cattle and no incidence of subclinical mastitis was noticed in that group. So it is concluded that mastiguard teat spray is an effective and easy to use technology to prevent the incidence of subclinical and clinical mastitis in dairy cows. The gross return in T1 is less because of less gross cost incurred by the farmer which resulted in better BCR and NR in T1 than in T2 group. Since the SCM affected cows are not being treated in that group the cost of production remained less. But if it gets flared up into clinical mastitis then the average treatment cost per mastitic cow worked out to be 3000 rupees and the corresponding milk withholding for a minimum of 7 days will result in additional loss of Rs.1129 and together the loss will be around Rs.4129 per each farmer for one mastitis incidence. This can be easily prevented using protective teat spray with an additional cost of just Rs.3000 per lactation. In case of very high yielding cows the loss due to mastitis will be very high and in that case this teat protective spray is a very good option in preventing the incidence of mastitis and thereby prevents the imminent loss to the farmers and the possible culling of the cow too. It is very visible from the milk yield performance graph below that in subclinical mastitis affected cows the milk yield suddenly dropped and never came up. In rest of the non affected cows in both the treatment groups the milk yield curve remained smooth and without much significant change in milk yield pattern.

Constrai Transporting the liquid material (mastiguard spray) through parcel service was very risky and nts faced hence proper protective packing is essential for long distance transport of the spray solution. Second thing the enhancer solution is too little or dried up in the plastic bottle container and in some of the test kits there is no enhancer solution available in the bottle and this also need to be addressed by the scientist who developed this technology.

OF	ն ո շ.	6		
1	Title of Technology	Assessment of scaffolding system in Banar	na	
	Assessed	(Continue OFT 2016 – 17)		
2	Thematic area	Production technology		
3	Scientist involved	Mr. P. Velmurugan (Horticulture)		
4	Farming situation	Season : Rabi		
		Farm situation : Irrigated		
		Soil type : Sandy clay loam		
		Fertility status :117.6 :12.3 :490 NPK		
5	Problem Definition	Lower net profit (Rs.112500/ha) – Area 330	ha	
		Transport and safeguarding the poles.		
		Damage due to wind (40-60%).		
		Recurring expense for traditional scaffolding	g system (70%	6 of
		production cost) High cost of casurina poles	(Rs.50-60/pole	e)
6	Critical inputs	Name of Critical input	Qty / trial	Cost / trial
		Sesbania seeds	300gm	100

		Galvanised iron collar rings	S	100		350	00
		Field board		1		350)
7	Details of technologies	T1 E D	T2 – T Shap	e	T3	- Iron	String
	selected for assessment	11 - F . F	Single Pole			methe	od
8	Source of technology		TNAU		CA	RD KV	K 2014
	Performance of the	Parameter	S	T1		T2	T3
9	Technology with	Yield / ha (Qtl)		240		248.5	255
	performance indicators	Income / ha (lakh)		2.04	ŀ	2.04	2.04
		Net Profit (Lakh)		1.66	5	1.36	1.74
		B.C Ratio		2.12	2	1.92	2.18
		Economics of scaffolding /	ha	37,50	00 6	57,500	30,000
10	Description of the results	The conventional way of se	caffolding in v sh	ape or	T sh	ape wit	th poles
		are very expensive and te	mporary. the c	olor ri	ngs a	are the	suitable
		scaffolding material and ha	ve long life and c	ost effe	ective	e.	
11	Feedback from farmers	Though the collar rings are	economic and sir	nple, a	vaila	bility o	f rings
		at local level is the problem	ns to access in tim	e			
12	Constraints identified and	Fabrication of collar rings a	as scaffolding ma	terials	to ba	anana	
	feedback for research						
13	Feedback to the scientist who	Rust free materials may be	rease th	ne lif	e of the	rings	
	develop the technology						
14	Final recommendation for	Collar rings to support bana	ana can be po <mark>pula</mark>	rized v	videl	y to mii	nimize
	micro level situation	the cost of production					

3. d FRONTLINE DEMONSTRATIONS

a	. Follow-up of F	LDs implemented	during previous years				
S.	Crop/	Thematic	Tashralasu damanstratad	Details of popularization methods	Horizon	al spread of technol	ogy
No	Enterprise	Area*	Technology demonstrated	suggested to the Extension system	No. of villages	No. of farmers	Area in ha
1	Ground	Drudgery	Demonstration on groundnut	Through training programmes and exhibition	5	20	40
	Nut	reduction	stripper and decorticator		5	20	40
2	Snake guard	Vegetables	Co – 2 snake guard as inter cropping in drumstick	Demonstration and Training	12	380	165
3	Guava	Fruits	L-49 guava under HDP system	Demonstration and Training	5	22	14
4	Green fodder	Livestock feeding	Azolla cultivation in homestead	Method demonstration, technology phamplets, distribution of azolla seeds and kit	128	1380	1
5	Green fodder	Livestock feeding	Mixed Green fodder cultivation (fodder sorghum+Hedgelucerne/Sesbania + Subabul + Hybrid cumbu Napier co-4)	Training, demonstration and pamphlets distribution and seed supply	368	4416	353
6	Livestock and poultry	Livestock feeding	Mineral mixture feeding to cows and goat (SMART mineral mixture / mineral lick)	Training, method demonstration, pamphlets distribution	450	8550	0
7	Livestock and poultry	Livestock feeding	Feeding unconventional feed (mesquite pod flour) to livestock	Training, method demonstration, pamphlets distribution	625	10450	0
8	Livestock and poultry	Disease management	Vaccinating the poultry chicks against Ranikhet disease	Training, method demonstration, pamphlets distribution	240	7560	0
9	Livestock and poultry	Disease management	Deworming the sheep and goat	Training, method demonstration, pamphlets distribution	1408	18150	0
10	Livestock and poultry	Disease management	Vaccinating the sheep and goat against PPR and ET diseases	Training, method demonstration, pamphlets distribution	1408	18150	0
11	Livestock and poultry	Disease management	Vaccinating the cows against FMD	Campaign mode	1821	28350	0

b. Details of FLDs implemented during the current year (Information is to be furnished in the following **three tables** for **each category** i.e. **cereals**, **horticultural crops**, **oilseeds**, **pulses**, **cotton and commercial crops**.)

SI. No	Season and Year	Сгор	Varie ty/ breed	H yb ri d	Source of funding	Thematic area	Technology Demonstrated	Area Pro pos ed	(ha) Act ual	fa dem SC /S T	No. of armer onstra Ot her s	s/ ation To tal	Reasons for shortfall in achievemen t
1	Rabi 2017 – 18	Paddy	Co – 51		ICAR		 ICMP in Paddy C o (R) 51 (TNAU 2013) duration 105 – 110 days - Medium slender Y – 6.7 t/ha) Apply green manure (Daincha)@ 50 kg seeds/ha, Bio fertilizer application + NPK 150 : 50 : 50 + zinc Sulphate 25 kg /ha IWM - Pre-emergence herbicides - Butachlor 1.25kg/ha IPM Practices. Stem borer and leaf folder – By releasing T.chilonis and T.japonicum parasitoids respectively @ 2cc/acre - 3times at 15 days interval 	4	4	10	0	10	Nil
2	Rabi 2017 – 18	Paddy	TRY - 3		ICAR	Promotion of ICMP practices	 ICMP in Paddy TRY (R) 3 (TNAU 2010) duration 135 days - Medium bold Y – 5.8 t/ha) INM Methods: green manure (Daincha)@ 50 kg seeds/ha Bio fertilizer application and gypsum application 200 kg /ac + NPK 150 : 50 : 50 + zinc Sulphate 25 kg /ha + Split application of N and K fertilizers and urea can be mixed with gypsum and neem cake at 5:4:1 IWM - Pre-emergence herbicides - Butachlor 1.25kg/ha. IPDM Practices. Stem borer and leaf folder – By releasing T.chilonis and T.japonicum parasitoids respectively @ 2cc/acre - 3times at 15 days interval 	4	4	0	10	10	Nil
3	Rabi 2017 – 18	Sorghu m	К – 12		ICAR		ICMP in Sorghum K – 12 (duration 95 days) – Yield 3123 Kg/ha, Seed treatment – Azophos INM – N:P:K (90:45 :45 kg/ha), Micronutrient mixture 12.5 kg /ha. IWM - PE Atrazine @ 0.25 kg/ha on 3-5 DAS, Foliar application of PPFM 1% (Or) EM 2% at 20 days interval	8	8	0	20	20	Drought
4	Rabi 2017 – 18	Chilli	Co(C H) – 1		ICAR	Varietal evaluation	Introduction of Chilli Co(CH)-1 to enhance production, productivity and net profit, Foliar application of 2% EM on 45^{th} , 60^{th} and 75^{th} day. Foliar application of 0.5% Psuedomonas liquid formulation to control fruit rot or COC 0.25% 3 spraying first spray just before flowering and 2^{nd} at the time of fruit formation and 3^{rd} 15 days	4	4	10	0	10	Nil

								Ann	ual R	eport	2017	- 18
						after 2 nd spray. Thrips management, Intercrop with sesbanai to provide shade Sprinkle starch solution on seedlings to increase humidity. Seed treatment with imidacloprid 12g/kg of seed Spray spinosad 45% SC 4ml/10lit of water Yellow Mite management, Encourage the activity of predatory mite Amblyseius ovalis / Sulphur dust @4gm/lit. Spray with Quinalphos 255EC 1.5ml/lit						
5	Rabi 2017 – 18	Guava	L-49	ICAR		HDP system, Planting saplings in 2x3m spacing Canopy management with judicious pruning Foliar application of micro nutrient spray	1	1	0	5	5	Nil
6	Rabi 2017 – 18	Banana	Local	ICAR	HDP Techniques	HDP system – planting of 2 suckers per pit (spacing 1.8x 3.6m:1600 plants per acre), Application of NPK 110:35:330 on 3 rd , 5 th , 7 th after planting, Application of Azospirillum, Phosphobacteria 2kg each at the time of planting Spraying of 2% EM, Spraying of 0.5% Banana special on 5th, 6 th and after bunch emergence Pseudomonas application on 2 nd , 4 th , 6 th month after planting	4	4	0	10	10	Nil
7		Sheep		ICAR	IAM Practices	TANUVAS 2014 Vaccination, sheep pox, Entero toxemia, Anthrax, Blue tongue Pneumonia and ectoparasitism, deworming and Didicking	-	-	10	0	10	Nil
8		Moringa		ICAR	Promotion of value added product preparation	Dehydration and value addition of Moringa leaves and pods – dehydrated Moringa and leaves, Moringa based convenience food mixes, quality control, packaging and labeling	-	-	0	5	5	Nil

Details of farming situation

	Farmi	Saasan			S	Status of s	oil	Drovious			Sassanal	No of
Sl. No	ng Situati on	and Year	Сгор	Soil type	Ν	Р	К	crop grown	Sowing date	Harvest date	rainfall (mm)	rainy days
1	Irrigat ed	Rabi 2017 – 18	Paddy	Clay loam	195	11.2	483	Paddy	16,17,18 and 19.11.17	9,10 th March 2018	454	11
2	Irrigat ed	Rabi 2017 – 18	Paddy	Clay loam	172	10.2	472	Paddy	22,23, 24.11.17	9,10,11 and 12.4.18	454	11
3	Irrigat ed	Rabi 2017 – 18	Sorghu m	Black soil	204	10.6	531	Green gram	Crop fa	iled due to se	evere drough	t
4	Irrigat ed	Rabi 2017 – 18	Chilli	Red sandy	212	11.2	512	Cotton	Nursery -5.1.18 Transplanting 11.2.18	Final harvest yet to be done	454	11
5	Irrigat ed	Rabi 2017 – 18	Guava	Red sandy	163	9.8	482	Chilli	21 st March 2018		454	11
6	Irrigat ed	Rabi 2017 – 18	Banana	Clay loam	174	10.2	512	Paddy	15 th February 2018		454	11
7			Sheep								454	
8			Moring a								454	11

Feedback

Sl. No	Title of program	Technical Feedback on the demonstrated technologies	Farmers' reactions on specific technologies
1	Demonstration of Paddy Co $(R) - 51$	Co (R) 51 provided higher yield with lesser	Co - 51 is the best variety because short duration,
	with ICM Practices for short duration	incidence of pest and disease and non-lodging	early mature, non-lodging, lesser stem borer and leaf
	variety	short duration fine grain varities	folder incidence
2	Demonstration of Paddy TRY (R) 3	TRY (R) 3 is highly saline resistance, provide	TRY – 3 variety showed good performance for saline
	with ICM Practices for saline affected	higher yield with less incidence of pest and	affected soil, high yield and less pest and diseases
	area	diseases	incidence
3	Demonstration of ICMP in dual	Crong foiled due	to terminal Drought
	purpose Sorghum K – 12	Crops faned due	to terminal Drought
4	Demonstration of Chilli (Co(CH)-1)	Though the shrinkage of dry pod was minimum,	The colour of the CO (CH) 1 Green pod was pale

			Annual Report 2017 – 18
		the pod weight was very low(3.8gm), More pod	green colour and the colour should be dark green to
		weight will increase the income/ unit area.	fetch more income. Fruit rot incidence was very
			minimum (5%) where as it was maximum(25%) in
			Local US 302
5	Demonstration of HDP system in Guava	Continuing, Yet to bear fruits	
6	Demonstration of High density planting	Continuing, Yet to bear bunch	
	system in Banana		
7	Demonstration of IAM practices in	Development of combined vaccines against viral	Blue tongue diseases vaccine is very effective in
	sheep	diseases / bacterial diseases will reduce the	preventing the diseases
		frequent handling of animals	Frequent handling of sheep for medication is laborious
			as well as frighten the sheep
8	Demonstration of production of	The alum solution treated leaves need to be shade	The farm women were convinced about the
	dehydrated drumstick leaves and their	dried prior to cabinet drying to avoid colour	importance of moringa leaves and practicing to fortify
	product as entrepreneurial activity	change	in their daily diet as moringa tea, soup, adai, idli podi
	· · ·		and sambar powder.
			Planning to take the marketing through FPCL.

Extension and Training activities under FLD

Sl. No.	Activity	No. of activities organized	Number of participants	Remarks
1	Field days	3	165	
2	Farmers Training	21	618	
3	Media coverage	0	0	
4	Training for extension functionaries	6	242	
5	Others (Please specify)			

Performance of Frontline demonstrations

Frontline demonstrations on crops

			Name Variety/	of the Hybrid				Yiel	d (q/ha)		% Increases	Econo	mics of den	nonstration	(Rs./ha)	Ec	conomics of (Rs./ha	f check ı)	
Сгор	Thematic Area	technology demonstrated	Domo	Check	No. of Farmers	Area (ha)		Demo		Check	in yield	Gross Cost	Gross Return	Net Return	BCR (R/C)	Gross Cost	Gross Return	Net Return	BCR (R/C)
							High	High Low Average											
Cereals																			

			Name Variety/	of the Hybrid				Yield	l (q/ha)		%	Econo	mics of den	nonstration	(Rs./ha)	E	conomics of (Rs./ha	check	
Сгор	Thematic Area	technology demonstrated	Domo	Check	No. of Farmers	Area (ha)		Demo		Check	in yield	Gross Cost	Gross Return	Net Return	BCR (R/C)	Gross Cost	Gross Return	Net Return	BCR (R/C)
							High	Low	Average										
Paddy	Promotion of ICMP practices	ICMP in Paddy C o (R) 51 (TNAU 2013) duration 105 – 110 days - Medium slender Y – 6.7 t/ha) Apply green manure (Daincha)@ 50 kg seeds/ha, Bio fertilizer application + NPK 150 : 50 : 50 + zinc Sulphate 25 kg /ha IWM - Pre- emergence herbicides - Butachlor 1.25kg/ha IPM Practices. Stem borer and leaf folder – By releasing T.chilonis and T.japonicum parasitoids respectively @ 2cc/acre - 3times at 15 days interval	Co – 51	ADT 45	10	4	73.50	68.50	71.81	60.61	18.47	43610	86175.5	42565.5	1.97	43030	79938	36908	1.85

			Name Variety/	of the Hybrid				Yiel	d (q/ha)		%	Econo	mics of den	nonstration	(Rs./ha)	E	conomics of (Rs./hz	check	
Crop	Thematic Area	technology demonstrated	Domo	Check	No. of Farmers	Area (ha)		Demo		Check	Increase in yield	Gross Cost	Gross Return	Net Return	BCR (R/C)	Gross Cost	Gross Return	Net Return	BCR (R/C)
							High	Low	Average			Cost	Return	Keturn	(10,0)	Cost	Return	Return	(100)
Paddy	Promotion of ICMP practices	ICMP in Paddy TRY (R) 3 (TNAU 2010) duration 135 days - Medium bold Y - 5.8 t/ha) INM Methods: green manure (Daincha)@ 50 kg seeds/ha Bio fertilizer application 200 kg /ac + NPK 150 : 50 + 200 kg /ac + 200 kg /ac + NPK 150 : 50 + 200 kg /ac + 200 kg /ac + 200 kg /ac + 200 kg /ac	TRY –	ASD 16	10	4	76.80	65.00	71.34	59.23	20.44	42462	85617	43155	2.01	42645	71083	28438	1.66

												 110 poir	
Millets													
Sorghum	Promotion of ICMP practices	ICMP in Sorghum K – 12 (duration 95 days) – Yield 3123 Kg/ha, Seed treatment – Azophos INM – N:P:K (90:45 :45 kg/ha), Micronutrient mixture 12.5 kg /ha. IWM - PE Atrazine @ 0.25 kg/ha on 3-5 bAS, Foliar application of PPFM 1% (Or) EM 2% at 20 days interval	K – 12			Crops fail	ed due to	severe d	lrought ir	1 the late	r stage		
Vegetables													

Chili	High yielding varietal introduction	Introduction of Chilli Co(CH)-1 to enhance production, productivity and net profit, Foliar application of 2% EM on 45 th , 60 th and 75 th day. Foliar application of 0.5% Psuedomonas liquid formulation to control fruit rot Thrips management, Intercrop with sesbania to provide shade . Seed treatment with imidacloprid 12g/kg of seed Yellow Mite management, Encourage the activity of predatory mite Amblyseius ovalis / Sulphur dust @4gm/lit.	Co(CH) – 1	US302	10	4	32.40	29.5	30.95	23.40	24.39	58750	201175	142425	2.42	56000	152100	96100	1.71
Cluster bean		Demonstration of Cluster bean (MDU- 1) variety	MDU – 1	Pusa navbahar	10	4	127.60	108.10	117.85	102.40	19.74	51250	153120	101870	2.98	47500	122880	75380	2.56
Fruits																			
Guava	HDP system	HDP system, Planting saplings in 2x3m spacing Canopy management with judicious pruning Foliar application of micro nutrient spray	L – 49	L-49	5	1					Guava	sapling	s are yet	to bear f	ruits.				

ICAR KVK, Thoothukudi Hosted by SCAD

Banana	HDP system	HDP system – planting of 2 suckers per pit (spacing 1.8x 3.6m:1600 plants per acre), Application of NPK 110:35:330 on 3 rd , 5 th , 7 th after planting, Application of Azospirillum, Phosphobacteria 2kg each at the time of planting Spraying of 2% EM, Spraying of 0.5% Banana special on 5th, 6 th and after bunch emergence Pseudomonas application on 2 nd , 4 th , 6 th month after planting	Sakkai	Sakkai	10	4				В	anana su	ıckers y	et to pro	duce the	bunches				
Banana	HDP system	Demonstration of Paired row system of planting in Banana with GAP	Nadu	Nadu	10	4	480	420	450	255	46.87	104500	384000	279500	3.67	83750	204000	120250	2.43

 GAP
 GAP

 * Economics to be worked out based total cost of production per unit area and not on critical inputs alone.

 ** BCR= GROSS RETURN/GROSS COST

Data on additional	parameters other than	yield (viz.	., reduction of	percentage	e diseases, increas	e in conceiving ra	te, inter-calving	period etc.)
			,			· · · · · / ·	···, ·· ·· · ·	

Data on other parameters in relation to technology demonstrated		
Parameter with unit	Check if any	Demo
Demonstration of Paddy Co (R) – 51 with ICM Practices for short duration variety		
No of hill / m^2	18.5	16
No of tillers / hill	20.9	24
No of seed / panicle	150.6	164.2
Yield/ha (Qtl)	66.61	71.81
Stem borer (%)	10.2	8.3
Leaf folder (%)	11.1	9.2
Rice blast incidence	Nil	Nil
BC ratio	1.85	1.97
Demonstration of Paddy TRY (R) 3 with ICM Practices for saline affected area		
Soil OC – before	-	0.24
Soil OC – After	-	0.28
Soil P ^H – before	-	8.3
Soil P^H – After	-	7.9
Soil EC – before	-	1.2
Soil EC – After	-	1.0
No of hill / m2	18.5	16
No of tillers / hill	17.6	18.6
No of seed / panicle	117.6	135
Stem borer (%)	8.7	6.5
Leaf folder (%)	11.2	7.4
Rice blast incidence	Nil	Nil
Yield/ha (Qtl)	59.23	71.34
BC ratio	1.66	2.01
Demonstration of ICMP in dual purpose Sorghum K – 12		
No of hills $/ m^2$	7	16
No of tiller /hill	1	2
Demonstration of Chilli (Co(CH)-1)		
No of plants/m2	16	9
% of fruit rot attack	25%	Nil
No of fruits/plant	4.5	5.5
Yield/ha	23.40	30.95
Net profit/ha	96100	142425
BCR	1.71	2.42
Demonstration of HDP system in Guava		
Survival (%)	95%	92%
Plant height at 3 rd month (cm)	125	112
Demonstration of High density planting system in Banana		
No. of plants / ha	1730	3100
Survival % at 5 th month	95	90

Continue FLD (2016 – 17)		
Demonstration of Paired row system of planting in Banana with GAP		
No of suckers / ha	1735	3470
Bunch weight (Kg)	17	15.5
Bunch quality	Good	Good
Yield / ha (Qtl)	255	450
Income / ha (Lakh)	2.04	3.84
Net profit / ha (lakh)	1.20	2.79
B.C Ratio	2.43	3.67
Demonstration of Cluster bean (MDU-1) variety		
No of pods / cluster	8	12
No of pods / plant	189	234
100 fresh pod weight (gm)	206	245
Yield / ha (Qtl)	98.80	127.6
B.C Ratio	2.13	2.98

Category	Themati	Name of the	No. of	No.of	Major parameters		%	Otl	ner	Economics of				Econo	mics of	check	/ 100
	c area	technology	Farme	Units			change	parar	neter	demor	nstratio	n (Rs.)/	100	u	nit shee	p flock	
		demonstrat	r	(Animal/			in major			u	nit shee	p flock			(Rs	.)	
		ed		Poultry /	Demo	Check	paramet	Demo	Check	Gross	Gross	Net	BC	Gros	Gross	Net	BC
				Birds,			er			Cost	Retur	Retur	R	S	Retur	Retur	R
				etc)							n	n	(R /	Cost	n	n	(R /
													C)				C)
Sheep																	
sheep	Livestoc	Vaccinating	10	1000	Weaning	Weaning	Weaning	Morbid	Morbi	10250	18500	17475	18.0	8050	10170	93650	12.6
	k	against the			percentag	percentage	percentag	ity and	dity		0	0	5		0		3
	managem	seasonal			e- 92.5	- 56.5	e- 36	Mortali	and								
	ent	diseases and			Weaning	Weaning	Weaning	ty due	Mortal								
		deworming			weight-	weight-	weight-	to	ity due								
		Feeding			9.25kg	7.25kg	27.6%	infectio	to								
		mineral lick			_	_	Morbidit	us	infecti								
		Protecting					y and	disease	ous								
		the lambs					Mortality	S-	diseas								
		against					due to	lambs-	es-								
		inclement					infectiou	8%	lambs-								
		weather					S	adult-	8%								
							diseases-	3.5%	adult-								
							lambs-		22.5%								
							8% adult-										
							3.5%										

* Economics to be worked out based total cost of production per unit area and not on critical inputs alone. ** BCR= GROSS RETURN/GROSS COST

FLD on Other enterprises

Category	Name of the technology	No. of	No.of	Major parameters		% change	Other parameter	
	demonstrated	Farme	units	Demo	Check	in major	Demo	Check
		r				parameter		
Value	Dehydration and value	5	1	Time for dehydration of leaves in cabinet	Nil		Organoleptic properties of Moringa tea – 76%	Nil
Addition	addition of Moringa leaves			drier – 12 hrs				
	and pods - dehydrated			Recovery of leaves (25kg per 100kg of			Organoleptic properties of Moringa soup – 66%	
	Moringa and leaves, Moringa			fresh leaves) – 25%				
	based convenience food			Recovery of pod – 17%			Organoleptic properties of Moringa adai mix – 81%	
	mixes, quality control, packaging and labeling			Shelf life – 110days			Organoleptic properties of Moringa idle podi mix – 89.5%	

FLD on Farm Implements and Machinery

Name of the implement	Сгор	Technology demonstrated	No. of Farm	Area (ha)	Major parameters	Field observation (output/man hour)		% change	e Labor reduction (man hours)				(Rs./	Cost redu 'ac or Rs./	ction Unit etc	.)
			er			Demo	Check	in major paramet er	Pod decorticat ion for sowing	Strip ping	Wee ding	Tot al	Pod decorticat ion for sowing	Stripp ing	Wee ding	Total
Groundnut	Ground	Demonstration on	10	4												
stripper and decorticator	nut	groundnut stripper and decorticator			Groundnut decorticator											
					Decorticating capacity(kg/hr)	60.5	15.5									
					Labour usage for decorticating 60Kg	1	24									
					Shelling (%)	71.5	71.5									
					Grain damage (%)	13.5	8.5		23	24	-	47	450	600	-	1050
					Germination (%)	85.6	87.5									
					Groundnut stripper											
					No of labour / ac	14	38									
					Saving in labour	37%										
					Saving in cost	23%										
					Stripping efficiency	99%										
					Damage to pods	2%										

Extension and Training activities under FLD

Sl. No.	Activity	No. of activities organized	Number of participants	Remarks
1	Field days	3	165	
2	Farmers Training	21	618	
3	Media coverage	0	0	
4	Training for extension functionaries	6	242	
5	Others (Please specify)			

PART 4. TRAINING

Training of Farmers and Farm Women including sponsored training programmes (On campus)

	No. of				No.	of Partic	ipants			
Area of training	Courses		General			SC/ST		Gr	and Tot	al
	0000000	Μ	F	Tot	Μ	F	Tot	Μ	F	Tot
Crop Production										
Integrated crop management	2	8	5	13	5	12	17	13	17	30
Cropping system	1	7	9	16	4	28	32	11	37	48
Horticulture		-	-	-		-			-	
Vegetable Crops	2	14	6	20	5	12	17	19	18	37
Garden establishment	2	13	1	14	5	3	8	18	4	22
Livestock Production and Manageme	ent									
Feed and fodder technology	1	2	6	8	0	13	13	2	19	21
Poultry management	3	38	4	42	9	8	17	47	12	59
Goat rearing	3	34	2	36	11	6	17	45	8	53
Home Science/Women empowermen	t									
Mushroom cultivation & value	1	2	1	3	1	1	2	3	2	5
addition	1	2	1	5	1	1	2	5	2	5
Soil Health and Fertility Management		-	-	-		-			-	
Soil fertility management	1	11	0	11	8	1	9	19	1	20
Agro forestry	1	r			-	r	1			
Integrated farming system	2	13	2	15	6	2	8	19	4	23
Capacity Building and Group Dynamics	I						1			
Eco friendly techniques	1	0	5	5	0	29	29	0	34	34
TOTAL	19	142	41	183	54	115	169	196	156	352

Training of Farmers and Farm Women including sponsored training programmes (Off campus)

	No. of				No.	of Partic	ipants			
Area of training	Courses		General			SC/ST		Grand Tot M F 31 12 34 102 4 30 15 0 0 44 30 6 8 32 105 166	al	
		Μ	F	Tot	Μ	F	Tot	Μ	F	Tot
Crop Production										
Integrated crop management	3	22	9	31	9	3	12	31	12	43
Cropping system	2	29	84	113	5	18	23	34	102	136
Livestock Production and Manageme	ent									
Goat rearing	2	3	21	24	1	9	10	4	30	34
Agro forestry										
Integrated farming system	1	11	0	11	4	0	4	15	0	15
Home Science/Women empowerment				-		-	-		-	
Value addition	3	0	37	37	0	7	7	0	44	44
Capacity Building and Group Dynamics										
Pesticide spray techniques	1	23	5	28	7	1	8	30	6	36
Awareness programme	1	5	23	28	3	9	12	8	32	40
Drought Management	8	93	137	230	12	29	41	105	166	271
TOTAL	21	186	316	502	41	76	117	227	392	619

Training of Farmers and Farm Women including sponsored training programmes CONSOLIDATED (On + Off campus)

	No of	No. of Participants										
Area of training	Courses	General				SC/ST		Grand Total				
		Μ	F	Tot	Μ	F	Tot	Μ	F	Tot		
Crop Production												
Cropping system	3	36	93	129	9	46	55	45	139	184		
Integrated crop management	5	30	14	44	14	15	29	44	29	73		
Horticulture												
Production of high value Vegetable/ flowers Crops under poly house	2	14	6	20	5	12	17	19	18	37		
Terrace/kitchen Garden establishment	2	18	27	45	5	7	12	25	34	59		
High density planting system in Fruit crops	1	18	0	18	2	0	2	20	0	20		

Livestock Production and Managem	ent									
Feed and fodder technology	1	2	6	8	0	13	13	2	19	21
Poultry management	3	38	4	42	9	8	17	47	12	59
Goat rearing	5	37	23	60	12	15	27	49	38	87
Home Science/Women empowermen	t									
Mushroom cultivation & value	1	2	1	2	1	1	2	2	2	5
addition	1	2	1	5	1	1	2	5	2	5
Value addition	3	0	37	37	0	7	7	0	44	44
Soil Health and Fertility Managemen	nt									
Soil fertility management	1	11	0	11	8	1	9	19	1	20
Agro forestry										
Integrated farming system	3	24	2	26	10	2	12	34	4	38
Capacity Building and Group Dynam	nics									
Eco friendly techniques	1	0	5	5	0	29	29	0	34	34
Pesticide spray techniques	1	23	5	28	7	1	8	30	6	36
Awareness programme	1	5	23	28	3	9	12	8	32	40
Drought Management	8	93	137	230	12	29	41	105	166	271
TOTAL	40	328	357	685	9 5	191	286	423	548	971

Training for Rural Youths including sponsored training programmes (on campus)

	No. of	No. of Participants										
Area of training	Cours		General	l		SC/ST		Grand Total				
	es	Μ	F	Tot	Μ	F	Tot	Μ	F	Tot		
Integrated farming	2	8	10	18	9	27	36	17	37	54		
Value addition	2	7	13	20	6	13	19	13	26	39		
Scientific goat rearing	2	9	7	16	7	11	18	16	18	34		
Poultry Management	2	14	12	26	11	5	16	25	17	42		
Dairy farming	2	9	11	20	3	7	10	12	18	30		
Organic agriculture practices and drought management	2	12	19	31	6	3	9	18	22	40		
TOTAL	12	59	72	131	42	66	108	101	138	239		

Training for Rural Youths including sponsored training programmes (off campus) - Nil

Training programmes for Extension Personnel including sponsored training programmes (on campus)

	No. of	No. of Participants										
Area of training	Cours	General				SC/ST	[Grand Total				
	es	Μ	F	Tot	Μ	F	Tot	Μ	F	Tot		
Bio fertilizer and EM usage	1	12	18	30	6	4	10	18	22	40		
Vermicomposting	1	9	13	21	5	6	11	14	18	32		
Contingency crop planning	1	10	12	22	4	6	10	14	18	32		
High density planting in fruit crops	1	5	11	16	2	3	5	7	14	21		
Usage of agriculture mobile apps	1	21	7	28	7	5	12	28	12	40		
Total	5	57	61	117	24	24	48	81	84	165		

Training programmes for Extension Personnel including sponsored training programmes (off campus) – Nil Sponsored training programmes conducted

S.		No. of	No. of No. of Participants									
No	Area of training		Cours General						Grand Total			
		es	Μ	F	Tot	Μ	F	Tot	Μ	F	Tot	
1	Usage of agriculture mobile apps	1	21	7	28	7	5	12	28	12	40	
2	Capacity building training on Scientific dairy farming	1	9	8	17	6	7	13	15	15	30	
3	Capacity building training on backyard poultry rearing	1	12	9	21	6	3	9	18	12	30	
4	Scientific banana cultivation	1	12	9	21	5	4	9	17	13	30	
5	Hydroponic fodder cultivation techniques	1	35	12	47	6	7	13	41	19	60	
6	Organic farming	1	9	0	9	6	0	6	15	0	15	
	Total	6	98	45	143	36	26	62	134	71	205	

ICAR KVK, Thoothukudi Hosted by SCAD

Details of sponsoring agencies involved

- 1. ATMA Tuticorin
- 2. Department of Horticulture, Animal husbandry, Marketing, SCAD
- 3. NABARD, Tuticorin

Details of Vocational Training Programmes carried out by KVKs for rural youth

		No. of	No. of Participants										
S.No.	Area of training	Courses	General				SC/ST	Grand Total					
		0001505	Μ	F	Tot	Μ	F	Tot	Μ	F	Tot		
1	Integrated Farming system	1	7	4	11	0	0	0	7	4	11		
2	Organic farming	1	9	0	9	6	0	6	15	0	15		
3	Mushroom Cultivation techniques	1	3	2	5	0	0	0	3	2	5		
	Grand Total	3	19	6	25	6	0	6	25	6	31		

<u>PART 5 – EXTENSION ACTIVITIES</u> Extension Programmes (including extension activities undertaken in FLD programmes)

Sl.	A _4::4	No. of	No. o	of Benef	iciaries	No. of Extension Officials			
No	Αсиνцу	Prog	Μ	F	Tot	Μ	F	Tot	
1	Advisory Services over phone	502	510	424	939	96	20	116	
2	Diagnostic visits	73	315	273	588	32	9	41	
3	Field Day	2	51	98	150	5	2	7	
4	Group discussions	2	15	7	22	0	0	0	
5	Kisan Ghosthi								
6	Film Show	12	230	302	532	54	38	92	
7	Self -help groups	38	430	340	770	35	13	48	
8	Kisan Mela	01	56	556	602	04	04	08	
9	Exhibition	9	3015	1193	4208	92	64	156	
10	Scientists' visit to farmers field	139	1520	560	2080	47	52	99	
11	Plant/animal health camps	20	170	126	296				
12	Farm Science Club	15	154	189	343	7	3	10	
13	Ex-trainees Sammelan								
14	Farmers' seminar/workshop	75	985	337	1322	47	31	78	
15	Method Demonstrations	26	210	181	391	9	12	21	
16	Celebration of important days	6	356	2918	3274	17	15	32	
17	Special day celebration (women's day)	1	10	310	320	0	8	8	
18	Exposure visits	11	310	189	499	12	11	23	
19	PRA	13	420	434	854	15	12	27	

Details of other extension programmes								
S. N	Particulars	Nos						
1	Electronic Media (CD./DVD)							
2	Extension Literature	4						
3	Newspaper coverage	11						
4	Popular articles	2						
5	Radio Talks	22						
6	TV Talks	10						
7		4 camps 1245						
	Animal health amps (Number of animals treated)	animals						
8	Others (pl. specify)							

Messages sent MOBILE ADVISORY SERVICES THROUGH MKISAN PORTAL

(While filling mobile advisory data, only fill numbers under 'Type of messages'. Please don't add any text) No of registered farmers:

	Type of messages													
Types of	С	rop	Livestock		Weather		Marketing		Awareness		Oth enterj	er orise	Total	
Messages	No of messages	No of farmers												
Text only	12	18500	04	18500	02	18500							18	18500
Total Messages	12	18500	04	18500	02	18500							18	18500
Total farmers Benefitted	12	18500	04	18500	02	18500							18	18500

MOBILE ADVISORY SERVICES THROUGH OTHERS

(While filling mobile advisory data, only fill numbers under 'Type of messages'. Please don't add any text) No of registered farmers: 218

		Type of messages												
Types of	Cro	op	Lives	Livestock		Weather		eting	Awareness		Other enterprise		Total	
Messages	No of messages	No of farmers	No of messages	No of farmers	No of messages	No of farmers								
Text only	12	218	09	218	48	218			08	218			77	218
Total Messages	12	218	09	218	48	218			08	218			77	218
Total farmers Benefitted	12	218	09	218	48	218			08	218			77	218

6. DETAILS OF TECHNOLOGY WEEK CELEBRATIONS - Nil

Annual Report 2017 – 18 <u>PART 7 – PRODUCTION OF SEED, PLANT, AND LIVESTOCK MATERIALS</u> Production of seeds by the KVKs

Crop category	Name of the crop	Variety	Hybrid	Quantity of seed (Kg)	Value (Rs)	Unit Cost Rs.	Number of farmers to whom provided
Vegetables	Seed Packet (No)	Bhendi – Arka Anamika Radish – Pusa Rashmi Cluster Bean – Pusa Navbahar Amaranthes (3 types) – Co 1 Drumstick – PKM-1 Bitter Gourd – Co 1 Snake Gourd – Co 1 Tomato – PKM 1 Brinjal – KKM 1 Chilli – K 1		45.5	11914	30	429
Fodder seeds	Fodder sorghum	Co (FS)-31 & 29		273	122850	450	89
	Azolla	Local		15	300	20	15
	Subabul	Local		5	1500	300	10
	Velimasal	Local		39	21450	550	29
Pulses	Green gram	Co (Gg) – 8		312	26530	85	10
	Black gram	VBN-8		1150	65000	250	55
	Total			1839.5	299364		637

Production of planting materials by the KVKs

Crop category	Name of the crop	Variety	Hybr	Number	Value (Rs.)	Number of farmers to
Fruits	Amla	NA – 7	10	190	8745	56
Trutts	Guava	L - 49		552	26290	56
	Jack	Bondruti		9	465	5
	Iamun	Ram Jamun		1419	91900	24
	Lime	Balaii		1205	68095	9
	Pomegranate	Ganesh		1	25	1
	Sapota	Cricket Ball		36	2195	24
	Mango	Alphonsa		73	4745	21
	Mango	Bangalora		35	2242	12
	Mango	Neelam		60	2695	19
	Mango	Himanpasandh		25	1625	12
	Mango	Senthuram		15	975	7
Ornamental plants	Alamenda	Local		2	30	1
	Almond	Local		23	670	7
	Clerodentran	Local		5	35	1
	Crotone	Local		1	15	1
	Drazina	Local		5	90	4
	Duranta	Local		14	121	3
	Eranthima	Local		5	51	2
	Fishtail farm	Local		8	440	3
	Ixora	Local		5	70	2
	Minimozonda	Local		1	30	1
	Mud pot rent	Local		20	400	1
	Nanthiyavittae	Local		5	110	3
	Polyalthia	Local		8	200	2
	Protray	Local		25	625	4
	Revel rani	Local		2	60	1
Plantation crops	Banain tree	Local		2	120	1
	Coconut	T x D		91	6615	13
	Coconut	D x T		48	4790	10
	Coconut	MD		42	4620	11
Medicinal plants	Neem	Local		12	224	4
	Occimum	Local		3	45	2
	Ranakalli	Local		1	65	1
	Sesbania	Local		125	497.75	3

	Ciriyanangai	Local	1	20	1
	Vallarai	Local	4	80	3
Forest Species	Kumil	Local	1	20	1
	Mahagani	Local	7	145	2
	Pelto farm	Local	9	305	4
	Red sandal	Local	33	825	3
	Silk cotton	Local	1	20	1
	Silver oak	Local	1	35	1
	Thespsia	Local	1	40	1
	Vengai	Local	6	150	2
Flower crops	Neeriam	Local	13	247	7
	Rose	Edward	43	1075	23
	Rose	Paneer	44	1381	32
	Tecoma – Orange	Local	5	95	3
	Tecoma – Yellow	Local	4	95	3
Spices	Curry leaf	Local	288	3305	12
	Tamarind	Local	61	3030	5
Vegetable Crops	Moringa	Kulathur	206	1147	9
	Total		4801	241935.75	440

Production of Bio-Products

Bio Products	Name of the bio-product	Quantity in Kg	Value (Rs.)	Number of farmers to whom provided
Bio Fertilizers	Azophos	290	23200	55
	Rhizopos	203	16240	49
	Vermicompost	3636	36360	193
Bio-fungicide	Pseudomonas	200	24000	68
	T.viridi	106	12720	32
Others (specify)	EMA (in lit)	1874	243620	576
	Panchakavya (in lit)	316	23700	64
	Herbal insect repellent (in lit)	17	1105	7
	Salt Lick	35	2625	24
	Banana Special	100	17500	18
	Mineral mixture	200	13000	21
	Earth warm	10	5000	13
	Total	6987	419070	1120

Production of livestock materials

Particulars of Live stock	Name of the breed	Number	Value (Rs.)	Number of farmers to whom provided
Poultry				
Chicks (Young one)	Vanaraja	204	12648	8
	Aseel Cross	265	16231.25	11
	Grama Priya	860	52675	19
	NDC – 1	120	7350	19
	Kaveari	238	14577.50	2
Japanese Quails	Nandanam	99	2970	17
Total		1786	106451.75	76

8. DETAILS OF SAMPLES ANALYZED SO FAR SINCE ESTABLISHMENT OF SWTL:

Details	No. of Samples analyzed	No. of Farmers benefited	No. of Villages	Amount realized (Rs.)
Soil Samples	365	201	104	40150
Water Samples	115	81	81	4600
Plant samples	0	0	0	0
Manure samples	2	1	1	600
Soil health card issued	0	421	4	0
Total	482	704	190	45350

9. SCIENTIFIC ADVISORY COMMITTEE

Date of SAC meeting	Number of members attended
29.11.2017	28

10. PUBLICATION

1. Publication of journals

S. No	Authors	Year	Title	Journal
1	Dr.V.srinivasan,	2017	Success story on Mushroom	Ulavarin Valarum Velanmai
	S.Sumathi		cultivation entrepreneur group	
2	P.Velmurugan and	2017	Success story on HDP in Guava	Ulavarin Valarum Velanmai
	V.Srinivasan			
3	V.Srinivasan and	2017	Success story of green fodder	Ulavarin Valarum Velanmai
	A.Murugan		cultivation for sales	
4	A.Murugan and	2017	Farmers innovation in total	Ulavarin Valarum Velanmai
	V.Srinivasan		mechanization of pulses cultivation	

2. Other publication

0					
S.No	Item	Year	Authors	Title	Publisher
1	Training manuals	2017	Dr.V.Srinivasan	1.Latest Agriculture technologies to	ATMA,
			P. Velmurugan	increase the farm productivity	Thoothukudi
			A.Murugan	2. Scientific Banana cultivation	KVK
			S.Sumathi	Practices	
				3.Organic farming Practices	KVK
				4.Drought management practices	KVK
2	others	2017		KVK Newsletter "Velan Thunaivan"	KVK

3. Literature Developed/Published (with full title, author & reference)

Item	Title	Authors name	Number
News	Vealan Thunaivan	All Staff	5000
letters			
Booklet	On Protection of Plant Varieties (PPV) and Farmers Right Act(FRA)	All Staff	1000
Folders			
	Folder on "Sankalp Se Sidhi"	All staff	1000
Leaflet	Leaflet on World Soil Health Day	All staff	1000
TOTAL			3000

3. Training/workshops/seminars etc details attended by KVK staff

Trainings attended in the relevant field of specialization (Mention Title, duration, Institution, location etc.)

ame of the staff	Title	ation	Organized by
P. Velmurugan	Workshop on Participatory	5days	ICAR KVK , MYRADA
	Impact Monitoring Assessment		Erode
P. Velmurugan	ICM practices to enhance the	8 days	Dept. of Agronomy, ICAR,
	production, productivity of		Pusa Institute, New Delhi
	agriculture crops		
P. Velmurugan	Climate change- Adaptation and	3days	BIRD, NABARD, Mangalore
	Mitigation strategies		
Dr.V.Srinivasan	Motivational training to	2 days	SCAD, Tirunelveli
	extension workers		
Dr.V.Srinivasan	Farm management and	1 day	DEE, TNAU, Coimbatore
	awareness on cyber crime		
Dr.V.Srinivasan and	Capacity building training to	3 days	NABARD, Chennai
S.Sumathi	promoting institutions on		
	Farmers producer organisations		
Mr. A. Murugan and	International conference on Bio	3 days	AC & RI, Killikulam
Mr. I. Jeyakumar			

11. DETAILS ON RAIN WATER HARVESTING STRUCTURE AND MICRO-IRRIGATION SYSTEM

Activities conducted						
No. of Training programmes	No. of Demonstration s	No. of plant materials produced	Visit by farmers (No.)	Visit by officials (No.)		
1-Drought management practices- Drip and sprinkler irrigation	Demo on Drip and rain gun		162	6		
2-Fodder production through hydroponics system	2- Live demonstration on fodder production through Hydroponic		186	6		

12. INTERVENTIONS ON DISASTER MANAGEMENT/UNSEASONAL RAINFALL / HAILSTORM/COLD WAVES ETC

Introduction of alternate crops/ varieties

Crops/cultivars	Area (ha)	Extent of damage	Recovery of damage through KVK initiatives if any
Pulses and Millet	75820	15250	1240
Total			

Major area coverage under alternate crops/varieties

Crops	Area (ha)	Number of beneficiaries
Vegetable crops – snakeguard CO-2	165ha	380
as an ideal intercrop in drumstick		
gardens		
Total		

Farmers-scientists interaction on livestock management

Livestock components	Number of interactions	No.of participants
Managing livestock during drought situations	12	354
Disease prevention in livestock and poultry	06	125
Green fodder cultivation and feeding livestock	08	165
Total	26	644

Animal health camps organized

Number of camps	No.of animals	No.of farmers
05	1250	235
Total	1250	235

Seed distribution in drought hit states

Crops	Quantity (qtl)	Coverage of area	Number of
		(ha)	farmers
Fodder sorghum	2.45	19.6	125
Hedge lucerne	0.56	2.0	25
Subabul	0.15	2.5	16
Drumstick	0.05	2.5	17
Sesbania	0.05	2.5	16
Total	3.26	29.1	199

Large scale adoption of resource conservation technologies

Crops/cultivars and gist of resource conservation technologies introduced	Area (ha)	Number of farmers
Vermicomposting		24
Sprinkler irrigation	12	45
Drip irrigation	255	560
Total	267	629

Awareness campaign

	1 0										
Meetings		Gosthies		Field d	lays	Farmers fa	air	Exhibition		Film sl	10W
No.	No.of	No.	No.of	No.	No.of	No.	No.of	No.	No.of	No.	No.of
	farmers		farmers		farmers		farmers		farmers		farmers
25	450	02	950	02	125			04	1250	04	1250

* Water campaign in 400 villages

13. AWARDS/REWARDS BY KVK AND STAFF

Recognitions & Awards/Special attainments and Achievements of Practical Importance					
Recognitions & Awards (Team Award/individual					
Item of Recognition	Year	Awarding Organization National	Individual/ collaborative		
		/ International / Professional;			
		Society			
Best Trainee Award to P.Velmurugan,	2017	IARI, Pusa Institute, New Delhi	individual		
Scientist(Horticulture) ICAR KVK,					
Thoothukudi					

14. DETAILS OF SPONSORED PROJECTS/PROGRAMMES IMPLEMENTED BY KVK

S.No	Title of the programme / project	Sponsoring agency	Objectives	Duration	Amount (Rs in lakhs)
1.	Drought management practices to farmers and extension personals	NABARD	To create awareness on Drought management and adaptation practices among the farmers	2 days	1.2
2.	Organic Farming Practices	Dept. Of Agriculture, Thoothukudi	To train the rural youth personals on various organic farming practices	3 days	0.60
3.	Preparation Of DPR on Watershed area	Dept. Of Agriculture, Thoothukudi	To workout the possible strategies to restore the water harvesting structures in the watershed area villages	7days	2.0
4	CAT programme on scientific dairy farming	NABARD	To improve the capacity of rural farmers to increase the productivity of dairy farming	3 days	0.54
5	CAT programme on backyard poultry rearing	NABARD	To improve the capacity of rural farmers to increase the productivity of poultry rearing	3 days	0.54
6	CAT programme on scientific methods of banana cultivation	NABARD	To improve the capacity of rural farmers to increase the productivity of banana farming	3 days	0.54
7	Awareness campaign on water conservation	NABARD	To create awareness among the village people in conserving the water	30 days	8.16

Please attach detailed report of each project/programme separately

15. SUCCESS STORIES

15. A Template for preparing success stories/case studies

1. Snake Gourd- An ideal remunerative intercrop in Drumstick gardens

Drumstick scientifically called Moringa oleifera of Moringaceae family, widely grown as a perennial vegetable crop in more than 1200 hectares of land in Thoothukudi district. Since the pods of drumstick are fetching very good price, the farmers of Sawyapuram and its surrounding Siruthandanallur, Mottathathanvilai, valasakaranvilai villages are growing drumstick round the year in about 620hactares.

When the pod production comes to end after the north east monsoon i.e during November, the farmers of this region used to raise snake gourd or bitter gourd as intercrops in drumstick garden. After collecting the detailed data through PRA exercise, farmers group meeting and one to one interaction, ICAR Krishi Vigyan Kendra, Thoothukudi introduced CO-2 Snake gourd as an intercrop for the drumstick garden through Front Line demonstration in 10 farmers field.

After the monsoon period is over the farmers used to give a slant cut in the branches at 150cm height and allow them to fall on the nearby tree. Similar practice will be carried out in the nearby tree so as to form a natural pandal system without incurring any extra cost for pandal erection. The snake gourd vines will be trained on drumstick branches. After the final harvest of snake gourd, the drumstick will be cut down 30cm from ground level and manuring will be given to boost the crop in the coming months. Every year the practice will be repeated and the drum stick will be grown as a perennial crop for 4-5 years.

Mr.B. Ayyadurai (45), Siruthondanallur village is one among the beneficiary selected under the FLD programme, took up the CO-2 snake gourd cultivation in drumstick garden. He received 1 kg of CO-2 Snake gourd seed and 1kg of vegetable special as critical inputs from ICAR Krishi Vigyan Kendra, Thoothukudi Before sowing, he applied 10kg of FYM, 15gm urea, 75gm super and 20gm potash as basal dose. He dippled 3-4 seeds per pit and irrigated the crop once in 4 days through drip irrigation. On 30th day he again applied 15gm of urea to boost the growth of snake gourd. As suggested by KVK staff, he also applied vegetable special @5gm/lit on 35th, 50th and 60th DAS. He harvested the fruits first on 60th day and continued till 108 days. He obtained a yield of 7.4 ton/acre and sold the fruits at an average price of Rs.9/kg in Thoothukudi market. He spent Rs. 28,500 as production cost and obtained Rs.66600/- and earned a net profit of Rs.38100 in 108 days with a BC ratio of 2.33.

His success clearly indicated that the Co 2 snake gourd is an ideal intercrop to Drumstick to earn additional income during the off season of drumstick. Now the Co-2 is cultivated predominantly in this region and the farmers are also happy to cultivate the high yielding Co -2 snake gourd variety as intercrop in Drumstick gardens.

2. Vermicomposting technology – as profitable enterprise to the IFS practitioners

Vermicompost is a rich source of essential nutrients to the plants and protects the crop from possible pest and disease attack by inducing the resistance mechanism to the plants. Besides converting the waste into usable manure, it becomes a remunerative enterprise to many progressive farmers especially those who have 2 to 3 dairy animals. Mr. Kingsly (58) of Mangalakurichi Village is one among the farmers, producing vermicompost in large quantity and marketing the compost in a successful manner.

Mr. Kingsly is an ardent follower of Integrated Farming System in his 3 acres of land. He is educated up to SSLC which helped him to read all the agriculture journals like Valarum velanmani, Pasumai Vikatan, Vivasaayi Ulagam etc and regularly subscribing all those journals to keep him up to date on latest agriculture technologies. After reading articles on vermicomposting, he approached ICAR Krishi Vigyan Kendra, Thoothukudi to establish a vermicompost production unit in his farm. As per the advice of KVK, he underwent a training programme on vermicompost production technology and saw the various live vermicompost production units at KVK. Immediately after the training he started a vermicompost unit in 500 Sq.ft area with 10 units (of 4x10' size each) in his farm, with the support and motivation from KVK. ICAR KVK, Thoothukudi Hosted by SCAD 49 KVK offered 2kg of earthworms besides the technological inputs to establish the vermicompost production unit.

Since he had 10 milch animals and 14 calves, he was able to collect the cow dung required for the unit. Earlier he used to sell the cow dung directly to the needy farmers and fetched only \Box 1000per tonnes of cow dung. After the establishment of Vermicompost production unit, he is converting all the cow dung into Vermicompost and selling at Rs.8-10/kg. Now from his 10 units, he is getting 2 tonnes of vermicompost from a single cycle. As an average he is producing 23 tonnes of Vermicompost from his production units. Apart from his own garden usage of 4 tons of Vermicompost in his farm, he is marketing the surplus 19 tonnes of Vermicompost and earning \Box 152000 per year. The nursery units, terrace garden owners, organic farming practitioners, agriculture departments are his regular customers. KVK Thoothukudi is also providing all the possible helps to market his Vermicompost by establishing a linkage with the needy people.

The training on Vermicompost production offered from the KVK not only helped him to be a successful entrepreneur but also helped him to enhance the soil fertility level of his farm. His farm production and income from Vermicompost production are now keeping him to lead to peaceful life and improved his socio economic condition as well.

Income from selling cow dung as such	82 tonnes x $\Box 1000 = 82000$
Income from selling vermicompost	23tonnes x \Box 8000 = 184000
Expenses for vermicompost making	$\Box 3000 / \text{ tonnes x } 23 = \Box 69000$
Additional profit by making vermicompost	□ 33,000

Economics of vermicomposting

3. Production and Marketing of Surabi Nutrimix – Successful Business model of a FPC

Millets are important crops for dry land farmers and they are highly nutritious and are a climate compliant crop. Millets are nutri-cereals known to have high amount of protein, essential fatty acids, dietary fiber, B-Vitamins, minerals such as calcium, iron, zinc, potassium, and magnesium. In the present scenario, demand for millets for direct consumption has been declining due to change in food habits and inconvenience attached with food preparation as compared fine cereals. Further, lack of processing technologies and also the government policies of no incentives towards millets also lead to less consumption of millets. Due to change in food habits involved in cereal based foods and drudgery in preparation, overall millet consumption in India has declined over the years.

Hence there is a need to develop the processing technology to make millet value added products available in convenient form at reasonable prices will find great demand in market, particularly in urban places where there is growing conscious for nutritive food intake. As a step towards this, ICAR-KVK, Thoothukudi established the millet primary processing unit and developed many value added millet food products with special focus on nutrimix flour making.

With this millet processing unit, ICAR KVK, Thoothukudi organized 12 training programmes covering the entire Thoothukudi district on value addition on millets for farmers, farm women, rural youth, and extension functionaries from the period 2012 to 2017. The objective was to provide and create a congenial situation for potential entrepreneurs and graduating startups through various training programmes. In order to make millet value chain as a sustainable one, the production and promotion of various products in the market is very much essential. With this motto, ICAR-KVK created a brand and labeled the nutrimix product as **Surabi nutrimix** with the EDP support from ICAR-ATARI. Necessary FSSAI (Food Safety and Standards Authority of India) License, Certificate have also been obtained.

Meanwhile KVK has organized Perunthalaivar Vazhai Farmer Producer Company Ltd during the year 2016 with 300 farmers as shareholders. Through various capacity Building and Entrepreneurial training

programme KVK motivated them to take up the nutrimix production unit under PPP mode. From June 2017 onwards they started producing the Nutrimix. Through the support of NGO's and WSHG leaders the Perunthalaivar Vazhai Farmer Producer Company Ltd has able to market their produce through local agents. Now this product is available in the nearby districts and in Chennai.

The production cost of Nutrimix is Rs 98/kg and the selling cost is Rs 120/kg. At present they get a net profit of Rs 6600/ month by selling 300 kg of Nutrimix per month. During this financial year the FPCL have a plan to upscale their production to a level of 1000 kg /month and marketing through dealers so as to earn a profit of Rs 22000/ month. KVK has ensured to extent all possible helps to be a leading producer and distributer of SURABI Nutrimix pocket in the ensuring months. The profit can be shared to all the FPCL shareholders in future as dividend. Moreover they also have a scope to diversify their millet products to increase their profit.

4. Scientific rearing of backyard poultry a boon for rural household income

Situational Analysis/Problem statement: Thoothukudi district is situated in southern Tamilnadu that falls in southern zone of agriculture and one third of its population lives in rural villages and depend on dry land farming with livestock rearing for their life sustenance. Back yard poultry rearing is a traditional practice that is both suitable and appropriate for the rural people in the district. It requires very little infrastructure set up and therefore becoming a realistic tool for the poverty alleviation of the poor. Backyard poultry rearing is a task that takes little time, but with multiple benefits for the farmers and farm women. There is evidence that growth in the livestock and poultry sector can significantly contribute to economic growth and poverty reduction. This is because the rural poor are partly dependent on livestock and poultry for their livelihood and demand for food from animal sources are in increasing trend. India's poultry sector has seen tremendous growth from 0.2kg per capita poultry meat availability in 1970 to 1.6kg in 2003. However large scale commercial farms have primarily driven the growth in the sector. In juxtapose to the growth in the commercial broiler and layer sector demand for the egg and meat from the free ranging birds also increases among the consumers resulting in double the prizing for these egg and meat in comparison to the commercial broiler and layer products. The most important aspect of backyard poultry lies in the fact that the supplementary incomes are widespread across different households and can be achieved with minimal inputs. There are three key problems encountered by the backyard poultry sector

- 1. The current backyard poultry breeds (desi poultry) offer less productivity . Often laying only sixty eggs per annum/hen or fifteen chicks per annum per hen. There is a lack of availability of country chicks/improved cross bred chicks for backyard rearing
- 2. Unprotected free range birds are at risk from predators such as wild cats, mongoose, eagle and crows. This is causing loss of income, economic and nutritional instability for families in Thoothukudi district
- 3. Since the service of vaccinator is not available in many of the rural villages they could not vaccinate their birds regularly. This is leading to an increase in the poultry mortality rate.

In response to the key problems identified, the following priority needs have been highlighted.

- 1. The need for women and youth to engage in income generating activities
- 2. An increase in the number of eggs produced per annum/hen
- 3. Protection against predators and diseases.

Interventions made by KVK Thoothukudi to address the issues in the last 5 years

- 1. Conducted 36 training programmes to 716 rural youths, farmers and farm women on scientific methods of backyard poultry rearing with particular emphasis on low cost feeding, disease prevention through vaccination, protection from predators through proper night shelters, egg collection, storage and marketing
- 2. Organized 5 exposure visits to successful backyard poultry entrepreneurs units, to empower the trainees with first-hand information and knowledge on the subject area

ICAR KVK, Thoothukudi Hosted by SCAD

- 3. Conducted method demonstrations at village level on scientific methods of backyard poultry rearing with improved practices
- 4. Information dissemination done through publications such as pamphlets, leaflet, etc in local language
- 5. Supplied 12545 numbers of one month old improved backyard poultry breed chicks (Vanaraja, Namakkal desi chicken-1, Giriraja, Gramapriya, Cauvery, Swarnadhara) to 885 farmers
- 6. Ensured the availability of vaccines to farmers from KVK (245 vials of Lasota and 380 numbers of R2B vaccines vials) and nearby medical shops in small towns like Pudukottai, Sekkarakkudi, Kovilpatti, Nazereth, Sathankulam, meignanapuram, Thiruchendur, Vilathikulam, and Kayathar,
- 7. KVK has provided technical advisories and consultancy services to 4245 farmers over these last five years
- 8. KVK has recorded the success story of two rural youths growing poultry which were telecasted in Makkal TV during the year 2017-18
- 9. KVK has displayed the live birds of improved backyard poultry in eleven exhibitions at different locations for the benefit of around 29500 visitors.

Output: A sample survey was taken from the trainees who underwent the training from KVK and it was found out that out of the 125 trainees who were contacted randomly from the list of participants 76 persons reported that they adopted backyard poultry rearing with improved birds along with desi birds and 42 of them reported vaccinating the birds by themselves and all of them reported erection of night shelters to the birds to protect it from predators. 56 persons reported that they sell surplus eggs at the rate of Rs.9 to 12 and the birds at the rate of Rs.300 per kg live weight. 20 persons reported that they are not selling the eggs but keep it for their own consumption. The mean flock size reported by the adopters was 12.5. The average number of egg production per household per day was reported to be 3.75. The average egg yield obtained from each hen was found to be 125 per annum which is almost 200 percent increase over the desi bird yield.

Outcome: Because of KVK interventions to promote backyard poultry rearing as an income generation cum nutritional security activity now this technology has spread to almost all the villages in the district and everyone in the field aware the benefits of rearing improved backyard poultry. Now the need is to ensure the continuous supply of chicks to them in their village itself to further spread this technology for large scale adoption in Thoothukudi district.

Impact: Adoption of scientific principle in backyard poultry rearing resulted in increase in income from each hen reared in the homestead both in terms of increased egg production (200 times when compared to desi birds) and reduced mortality due to vaccination against ranikhet disease (upto 99%). Corresponding increased number of survivors in each household resulted increase in egg yield from desi hens too. This increased yield resulted in generation of surplus egg and meat production over family consumption to the tune of Rs.7000 per household (having 10 hen/homestead) per annum. KVK has supplied 12545 chicks over these five years with 90 percent survival rate and 50% of female population resulted in the production of 6.771akh eggs valued at Rs.9 per egg as Rs.60.931akhs per annum. This is a huge impact on rural economy in terms of financial outcome as well as on nutritional impact created in each family because of the availability of nutritious eggs for the family consumption in the frequently drought prone district where the income from crop is always at the mercy of climate. Poultry rearing in the homestead is definitely a boon for rural household and the adoption of scientific principles ensured the economic returns from birds reared under free ranging system.

15. B Give details of innovative methodology or innovative technology of Transfer of Technology developed and used during the year – Nil

15. C Give details of indigenous technology practiced by the farmers in the KVK operational area which can be considered for technology development (in detail with suitable photographs) – Nil

<u>16. IMPACT</u>

Α.	Imn	act of	f KVK	activities	(Not to	he rest	ricted fo	r renorting	neriod)
л.	mp	actu		activities		DC I CSI	i icicu io	i icporung	puriou)

	No. of	% of	Change in i	ncome (Rs.)
Name of specific technology/skill transferred	participa	adopti	Before	After (Rs./Unit)
	nts	on	(Rs./Unit)	
Cattle feed preparation from Prosopis Juliflora pods	60	35	16150	20350
Rearing desi/cross bred chickens with proper care and management	26	90	2000/10 hen	7000/10 hen
Use of mineral lick feeding to goat	18	72	1500/goat	2500/goat
Regular Vaccination and Deworming to the goat	50	95	1500	2500
Green Fodder cultivation	25	80	16150	24350
Mineral mixture feeding to dairy cows	36	85	150/cow/day	160/cow/day
Kitchen garden	140	65	0	600/year
Supplementary feeding with Nutrimix to enhance the body weight and growth in children (Cost saved)	220	85	1000/year	3000/year
Use of certified seed in improving the yield in black gram and Green gram	42	80	13500/ac	15750/ac
Pulses wonder - Foliar application technology	42	68	2700	3150
ICMP including mechanization in green gram (labour savings)	25	95	10500	13500
Disease management in Banana (increased % of survival)	20	75	42000/ac	68000/ac
Co 14 lab lab cultivation techniques	20	50	45000/ac	61200/ac
High density planting in guava (On 3 rd year)	05	80	From 160trees 24000/ac	From 600trees 90000/ac

NB: Should be based on actual study, questionnaire/group discussion etc. with ex-participants.

B. Cases of large scale adoption

(Please furnish detailed information for each case) (Note: OFT – O, FLD – F, Training – T, Extension Activities – E)

Discipline	Name of the technology	Source of the	How the technology	Spread in	No of formors
	Use of weadiaids to control wead in pulse	technology	ti ansier reu	Alea (acte)	Tai mer s
Agronomy	crop	TNAU	F,T,E	30000	10500
Agronomy	Manual weeder usage in pulse crop	TNAU	F,T,E	10000	750
Agronomy	Total mechanization in green gram	TNAU	F,T,E	13500	820
Agronomy	Biofertilizer and Bio pesticide usage	TNAU	F,T,E	80000	22500
Agronomy	Soil sampling, testing	TNAU	T,E	80000	18200
Horticulture	High density planting techniques in guava and banana	TNAU	F,T,E	300	251
Horticulture	Seed production techniques in MDU – 1 cluster bean	TNAU	F,T,E	50	50
Horticulture	Planting fruit crops in garden land	TNAU	T,E	100	100
Home Science	Kitchen gardening with improved vegetable varieties	TNAU	T,E	-	250
Home Science	Terrace garden	TNAU	T,E	100 units	100
Home Science	Value addition to banana and milk products	TNAU / TANUVAS	T,E	200	200
Animal Science	Promotion of backyard poultry rearing with improved breeds	TANUVAS	F,T,E	-	463
Animal Science	Prosopis pod flour as an alternative concentrate feed ingredient	CAZRI, Jodhpur	O,T,F, E	-	596
Animal Science	Comprehensive disease control in goats	TANUVAS	F,T,E	-	1640
Animal Science	Green fodder- CN hybrid CO-4	TNAU	F,T,E		750
Animal Science	Ranikhet disease vaccine- RDVK/R2B	TANUVAS	T,E		12500
Fisheries	Composite fish culture in village pond using stunted fingerlings	TANUVAS	F,T,E	67 ponds	67 Villages
Agro forestry	Tree planting in wastelands	TNAU	T,E	200	150

C. Details of impact analysis of KVK activities carried out during the reporting period - Nil

17. LINKAGES

A. Functional linkage with different organizations

Type of Institute	Name of the Organization	Nature of linkages
TNAU	ACRI, Killikulam	Technical support to prepare pre action plan
		Technological input sharing to finalize the OFT, FLD
		Participation and critically review the KVK activities in SAC meeting
		Participation in Seminars, workshop and training programme
TANUVAS	VCRI- Tirunelveli	Participation in Seminars, workshop and training programme
		Participation and critically review the KVK activities in SAC meeting
		Supply of inputs like chicks, fodder seeds etc.,
		Expert advice on disease prevention and diagnosis
TANUVAS	VCRI, Namakkal	Supply of Mineral mixture – 120Kg
TNAU	Seed center,	For sourcing the seeds of paddy, green gram, black gram, Snake gourd,
	TNAU	Chilli etc., for effective implementation of FLD, Oft programmes in time
TNAU	DEE, TNAU	Technological back stopping in finalizing the action plan
		Participation and critically review the KVK activities in SAC meeting
ATMA	Dept of	Dissemination of technological information through on campus trainings
	Agriculture,	and field demonstrations etc.,
	Thoothukudi	supportive role in organizing meetings, seminars, village level trainings
		etc.,
Banks	NABARD	Promotion of FPOs, JLGs and financial support for seminar (1) CAT
2.51.1		programmes(5) in Thoothukudi,
Ministry of	All India Radio,	Recording the success stories of farmers (15), latest technologies in
information and	Tirunelveli	Agriculture, Horticulture, Animal Husbandry, Home science (17) and
Broadcasting	<i>WWW</i> N ₁ ,, 1, 1,, 1	broadcasting the same
KVK Namakkai	КУК матакка	Supply of fodders
		Hedge Lucern – 20Kg
KVK Thoni	ICAP KWK Thoni	Suba bul – SKg
KVK Dindigul		Supply of 100Kg of ballana special
	Dindigul	Suppry of 22.5 Kg of Veg. spi
ICDS	ICDS	Participation in Seminar On Minor Millets and its value addition
		Tachnical information sharing on malnourishment and anomic level among
		children and women
		Technical information sharing on malnourishment and anemic level among children and women

NB The nature of linkage should be indicated in terms of joint diagnostic survey, joint implementation, and participation in meeting, contribution received for infrastructural development, conducting training programmes and demonstration or any other

B.	List Externally	Funded	Projects /	schemes	undertaken	by the	e KVK	and	operational	now,	which ha	ave
be	en financed by S	State Govt	. /Other A	gencies								

Name of the scheme	Role of KVK	Date/ Month of initiation	Funding agency	Amount (Rs.)
Formation of FPCs	Formation of FPC by sensitizing the farmers. Registration of FPC and developing business plan for FPC.	05.09.2015	NABARD	27,00,000
CAT	Organizing and conducting capacity building training programmes and exposure visit	05.02.2016	NABARD	90000
Formation of FPCs	Formation of FPC by sensitizing the farmers. Registration of FPC and developing business plan for FPC.	05.02.2016	NABARD	2700000

17. Farm life school:

Thematic area:Improving the health and nutritional security

Title: Farm life nutrition schools for achieving health and nutritional security

Village: Manjaneerkayal

No of adolescent girls: 25

Critical inputs: nutri mix, drum stick and curry leaf powder, nutrition garden seed kit pockets,

Session	Activity/topics discussed/demonstration					
number						
1	Introduction and base line data collection . recording the anthropometric measurements and					
	blood haemoglobin level					
2	Demonstration on use of Nutrimix porridge preparation					
3	Training on nutrition garden establishment and maintenance					
4	Training on sanitation, health and hygiene					
5 Visit to nutrition garden and identification its uses						
6	Demonstration on Dosa and adai preparation using Moringa leaves					
7	Training on nutrition for adolescent girls and demonstration of nutritious food preparation					
	using locally available materials and Laddu and Paniyaram preparation with Nutrimix					
8	Gender sensitization					
9	9 demonstration on Puttu and kolukattai preparation using Nutrimix					
10	Recording the anthropometric measurements ,blood haemoglobin level and change in					
	Knowledge gained and sharing the outcome of farm life school					

Results:

Parameters	Before	After
Average body weight	35 kg	41 kg
Blood hemoglobin percentage	8.5g%	9.8g%
Establishment of nutrition kitchen garden	5%	42%
changes in nutrition diet intake	48%	67%
nutrition knowledge	56%	68%
sanitation knowledge	46%	62%
% of adolescent girls using toilet	12%	52%
Proper hand washing habits with soap	38%	71%

FINANCIAL PERFORMANCE

A. Details of KVK Bank accounts

Bank account	Name of the bank	Location	Branch code	Account Name	Account Number	MICR Number	IFSC Number
With Host Institute	Central Bank of India	Tirunelveli Junction	280924	Main Account	3117090470	627016002	CBIN0280924
	South Indian Bank Ltd	Tirunelveli Junction	0254	Revolving Fund	025407300 0000462	627059002	SIBL0000254

B. Utilization of KVK funds during the year 2017 – 18 (Rs. in lakh)

SI. No	Particulars	Sancti	Expenditure		
A	Recurring Contingencies	BE RE		Ks.	
	Pay & Allowances	96,00,000	84,65,000	84,36,960	
	Traveling allowances				
	a. Field activities & programmes	1,25,000	1,45,000	81,448	
	b. Training programmes				
	Contingencies				
	A. Office Contingencies				
	a. Stationery, telephone, postage and other expenditure on office	5,50,000	5,50,000	5,49,819	
	b. POL, repair of vehicles, tractor and equipment				
	B. Technical Programme				
	a. Rs. 150/ person per day towards food and refreshment for kvk training programmes for farmers / extension personals				
	b. Teaching materials for training and demonstration	8,94,000 8,94,000			
	c. Training of extension functionaries			8,93,614	
	d. publication extension literature for farmers and extension functionaries				
	e. honorarium to farmers		8,94,000		
	f. On farm testing (problem oriented)				
	g. Front Line demonstration on major crops				
	h. Kissan Mela / farmers fair (at KVK farm)				
	i. Library (Purchase of Journal, Periodicals, News Paper and Magazines)				
	j. Maintenance of farm				
	k. EDP / IFS / FFS / FLS				
	Total of Contingencies	14,44,000	14,44,000	14,43,433	
	Total Recurring	1,11,69,000	1,00,54,000	99,61,816	
В	Non-Recurring Contingencies				
	Works			0	
	Furniture & Equipments			0	
	Vehicle (Four wheeler/Two wheeler, please specify)			0	
	Library			0	
	Total Non-Recurring			0	
	REVOLVING FUND			0	
	GRAND TOTAL (A+B+C)	1,11,69,000	1,00,54,000	99,61,816	

C. Status of revolving fund (Rs. in lakh) for the three years

Year	Opening balance as on 1 st April	Income during the year	Expenditure during the year	Net balance in hand as on 1 st April of each year	
April 2015 to March 2016	3.42	6.27	6.79	2.90	
April 2016 to March 2017	2.90	12.65	12.79	2.76	
April 2017 to March 2018	2.76	9.49	6.36	5.89	